Metal halide perovskites(MHP)are potential candidates for the photocatalytic reduction of CO_(2)due to their long photogenerated carrier lifetime and charge diffusion length.However,the conventional long-chain ligand ...Metal halide perovskites(MHP)are potential candidates for the photocatalytic reduction of CO_(2)due to their long photogenerated carrier lifetime and charge diffusion length.However,the conventional long-chain ligand impedes the adsorption and activation of CO_(2)molecules in practical applications.Here,a ligand modulation technology is employed to enhance the photocatalytic CO_(2)reduction activity of lead-free Cs_(2)AgInCl_(6)microcrystals(MCs).The Cs_(2)AgInCl_(6)MCs passivated by Oleic acid(OLA)and Octanoic acid(OCA)are used for photocatalytic CO_(2)reduction.The results show that the surface defects and electronic properties of Cs_(2)AgInCl_(6)MCs can be adjusted through ligand modulation.Compared with the OLA-Cs_(2)AgInCl_(6),the OCA-Cs_(2)AgInCl_(6)catalyst demonstrated a significant improvement in the catalytic yield of CO and CH_(4).The CO and CH_(4)catalytic yields of OCA-Cs_(2)AgInCl_(6)reached 171.88 and34.15μmol g^(-1)h^(-1)which were 2.03 and 12.98 times higher than those of OLA-Cs_(2)AgInCl_(6),and the total electron consumption rate of OCA-Cs_(2)AgInCl_(6)was 615.2μmol g^(-1)h^(-1)which was 3.25 times higher than that of OLA-Cs_(2)AgInCl_(6).Furthermore,in situ diffuse reflectance infrared Fourier transform spectra revealed the enhancement of photocatalytic activity in Cs_(2)AgInCl_(6)MCs induced by ligand modulation.This study illustrates the potential of lead-free Cs_(2)AgInCl_(6)MCs for efficient photocatalytic CO_(2)reduction and provides a ligand modulation strategy for the active promotion of MHP photocatalysts.展开更多
BACKGROUND Synaptotagmins(SYTs)are a family of 17 membrane transporters that function as calcium ion sensors during the release of Ca2+-dependent neurotransmitters and hormones.However,few studies have reported whethe...BACKGROUND Synaptotagmins(SYTs)are a family of 17 membrane transporters that function as calcium ion sensors during the release of Ca2+-dependent neurotransmitters and hormones.However,few studies have reported whether members of the SYT family play a role in glucose uptake in diabetic retinopathy(DR)through Ca2+/glucose transporter-1(GLUT1)and the possible regulatory mechanism of SYTs.AIM To elucidate the role of the SYT family in the regulation of glucose transport in retinal pigment epithelial cells and explore its potential as a therapeutic target for the clinical management of DR.METHODS DR was induced by streptozotocin in C57BL/6J mice and by high glucose medium in human retinal pigment epithelial cells(ARPE-19).Bioinformatics analysis,reverse transcriptase-polymerase chain reaction,Western blot,flow cytometry,ELISA,HE staining,and TUNEL staining were used for analysis.RESULTS Six differentially expressed proteins(SYT2,SYT3,SYT4,SYT7,SYT11,and SYT13)were found between the DR and control groups,and SYT4 was highly expressed.Hyperglycemia induces SYT4 overexpression,manipulates Ca2+influx to induce GLUT1 fusion with the plasma membrane,promotes abnormal expression of the glucose transporter GLUT1 and excessive glucose uptake,induces ARPE-19 cell apoptosis,and promotes DR progression.Parkin deficiency inhibits the proteasomal degradation of SYT4 in DR,resulting in SYT4 accumulation and enhanced GLUT1 fusion with the plasma membrane,and these effects were blocked by oe-Parkin treatment.Moreover,dysregulation of the myelin transcription factor 1(Myt1)-induced transcription of SYT4 in DR further activated the SYT4-mediated stimulus-secretion coupling process,and this process was inhibited in the oe-MYT1-treated group.CONCLUSION Our study reveals the key role of SYT4 in regulating glucose transport in retinal pigment epithelial cells during the pathogenesis of DR and the underlying mechanism and suggests potential therapeutic targets for clinical DR.展开更多
Addiction to nicotine, and possibly other tobacco constituents, is a major factor that contributes to the difficulties smokers face when attempting to quit smoking. Amongst the various subtypes of nicotinic acetylchol...Addiction to nicotine, and possibly other tobacco constituents, is a major factor that contributes to the difficulties smokers face when attempting to quit smoking. Amongst the various subtypes of nicotinic acetylcholine receptors (nAChRs), the α4β2 subtype plays an important role in mediating the addiction process. The characterization of human α4β2-ligand binding interactions provides a molecular framework for understanding ligand-receptor interactions, rendering insights into mechanisms of nicotine addiction and may furnish a tool for efficiently identifying ligands that can bind the nicotine receptor. Therefore, we constructed a homology model of human α4β2 nAChR and performed molecular docking and molecular dynamics (MD) simulations to elucidate the potential human α4β2-ligand binding modes for eleven compounds known to bind to this receptor. Residues V96, L97 and F151 of the α4 subunit and L111, F119 and F121 of the β2 subunit were found to be involved in hydrophobic interactions while residues S153 and W154 of the α4 subunit were involved in the formation of hydrogen bonds between the receptor and respective ligands. The homology model and its eleven ligand-bound structures will be used to develop a virtual screening program for identifying tobacco constituents that are potentially addictive.展开更多
The effect of a sandwiched cross-shaped metamaterial absorber(CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber(PUFA) is investigated. Combining with the sandwiched CMMA, the ba...The effect of a sandwiched cross-shaped metamaterial absorber(CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber(PUFA) is investigated. Combining with the sandwiched CMMA, the bandwidth of -10-dB reflection loss for PUFA is broadened from 7.4 GHz to 9.1 GHz, which is attributed to the overlap of two absorption peaks originating from CMMA and PUFA, respectively. The values of the two absorption peaks located at 10.15 GHz and 14.7 GHz are -38.44 dB and -40.91 dB, respectively. Additionally, distribution of surface current,electromagnetic field and power loss density are introduced to investigate the absorption mechanism of the CMMA. The electromagnetic field distribution of the double-layered PUFA and the three-layered hybrid absorber are comparatively analyzed to ascertain the influence of CMMA. The results show that the proposed hybrid absorber can be applied to the anti-electromagnetic interference and stealth technology.展开更多
Nylon 1212/organic montmorillonite(OMMT)nanocomposites were prepared using the melt compounding method.The morphology and dynamical mechanical properties of the nanocomposites were investigated using transmission elec...Nylon 1212/organic montmorillonite(OMMT)nanocomposites were prepared using the melt compounding method.The morphology and dynamical mechanical properties of the nanocomposites were investigated using transmission electron microscope(TEM)and dynamic mechanical analysis(DMA).The storage modulus of nylon 1212/OMMT nanocomposites was increased with increasing OMMT.The flame retardant properties were characterized by cone calorimetry,scanning electron microscope(SEM)and X-ray photoelectron spectroscopy(XPS).The flame retardant properties were characterized using cone calorimetry,whereby nylon 1212/OMMT nanocomposites were improved compared with pure nylon 1212 because of the carbonaceous-silicate granular materials which were formed during combustion,thus proposing the flame retardant mechanism.展开更多
An analytical drain current model on the basis of the surface potential is proposed for indium-gallium zinc oxide(InGaZnO)thin-film transistors(TFTs)with an independent dual-gate(IDG)structure.For a unified expression...An analytical drain current model on the basis of the surface potential is proposed for indium-gallium zinc oxide(InGaZnO)thin-film transistors(TFTs)with an independent dual-gate(IDG)structure.For a unified expression of carriers’distribution for the sub-threshold region and the conduction region,the concept of equivalent flat-band voltage and the Lambert W function are introduced to solve the Poisson equation,and to derive the potential distribution of the active layer.In addition,the regional integration approach is used to develop a compact analytical current-voltage model.Although only two fitting parameters are required,a good agreement is obtained between the calculated results by the proposed model and the simulation results by TCAD.The proposed current-voltage model is then implemented by using Verilog-A for SPICE simulations of a dual-gate InGaZnO TFT integrated inverter circuit.展开更多
With the accelerated development of modern detection and communication technology,the multifunctional wearable materials with excellent electromagnetic interference(EMI)shielding,infrared stealth,and human monitoring ...With the accelerated development of modern detection and communication technology,the multifunctional wearable materials with excellent electromagnetic interference(EMI)shielding,infrared stealth,and human monitoring for improving military combat capability have received extensive attention.In this work,the lightweight melamine foam(MF)@silver nanowires(AgNWs)-iron nanowires(FeNWs)(AgFe-MF)was fabricated by a vacuum-assisted dip-coating method.Due to the porous structure and synergistic electrical and magnetic losses,this lightweight(0.115 g/cm^(3))composite foam with an ultra-low filler content(0.62 vol.%)exhibited an ideal EMI shielding efficiency of 38.4 dB.On the other hand,the AgFe-MF realized a powerful multifunctional integration.The surface saturation temperature of the AgFe-MF reached 94.2℃under a low applied voltage of 1.8 V and remained extremely fast heating and cooling response and terrific working stability,resulting in excellent infrared stealth and camouflage effects.Furthermore,taking virtues of the elastic porous conductive architecture,the AgFe-MF was utilized as a piezoresistive sensor exhibiting board compressive interval of 0–1.62 kPa(50%strain)with a good sensitivity of 0.57 kPa^(−1).This work will provide new ideas and insights for developing multifunctional wearable devices in the fields of EMI shielding,thermal management,and piezoresistive sensing.展开更多
Passive cooling permits thermal management of near-zero energy consumption and low CO_(2)emissions.Despite significant progress of passive radiative coolers,comfortable and steady temperatures can hardly be achieved d...Passive cooling permits thermal management of near-zero energy consumption and low CO_(2)emissions.Despite significant progress of passive radiative coolers,comfortable and steady temperatures can hardly be achieved due to their inadequate daytime cooling power(below 0.2 k W m^(-2))yet over-cooling at night.Here,we provide a bright-white hydrogel that enables ondemand passive cooling by virtue of adaptive water evaporation and high solar reflectance up to 86.1%.Notably,theoretical cooling power determined by the evaporating rate can reach 1.25 k W m^(-2)in daytime but decreases dramatically at night.Hence sub-ambient temperature reduction of 11-13℃at noon yet nearly none at night are realized,with the diurnal temperature difference narrowed significantly.Moreover,effective cooling using colored hydrogels,and transition from evaporative cooling to solar heating have been demonstrated.This novel evaporative cooling approach will pave the way for smart passive coolers of high efficiency,colorful appearance,and low cost.展开更多
When ultrasonically cutting honeycomb core curved parts,the tool face of the straight blade must be along the curved surface’s tangent direction at all times to ensure high-quality machining of the curved surface.How...When ultrasonically cutting honeycomb core curved parts,the tool face of the straight blade must be along the curved surface’s tangent direction at all times to ensure high-quality machining of the curved surface.However,given that the straight blade is a nonstandard tool,the existing computer-aided manufacturing technology cannot directly realize the above action requirement.To solve this problem,this paper proposed an algorithm for extracting a straight blade real-time tool face vector from a 5-axis milling automatically programmed tool location file,which can realize the tool location point and tool axis vector conversion from the flat end mill to the straight blade.At the same time,for the multi-solution problem of the rotation axis,the dependent axis rotation minimization algorithm was introduced,and the spindle rotation algorithm was proposed for the tool edge orientation problem when the straight blade is used to machine the curved part.Finally,on the basis of the MATLAB platform,the dependent axis rotation minimization algorithm and spindle rotation algorithm were integrated and compiled,and the straight blade ultrasonic cutting honeycomb core postprocessor was then developed.The model of the machine tool and the definition of the straight blade were conducted in the VERICUT simulation software,and the simulation machining of the equivalent entity of the honeycomb core can then be realized.The correctness of the numerical control program generated by the postprocessor was verified by machining and accuracy testing of the two designed features.Observation and analysis of the simulation and experiment indicate that the tool pose is the same under each working condition,and the workpieces obtained by machining also meet the corresponding accuracy requirements.Therefore,the postprocessor developed in this paper can be well adapted to the honeycomb core ultrasonic cutting machine tool and realize high-quality and high-efficient machining of honeycomb core composites.展开更多
Conventional photodetection converts light into electrical signals only in a single electromagnetic waveband.Multiband detection technology is highly desirable because it can handle multispectral information discrimin...Conventional photodetection converts light into electrical signals only in a single electromagnetic waveband.Multiband detection technology is highly desirable because it can handle multispectral information discrimination,identification,and processing.Current epitaxial solid-state multiband detection technologies are mainly within the IR wave range.Here,we report epitaxial indium antimonide on gallium arsenide for IR and millimeter/terahertz wave multiband photodetection.The photoresponse originates from interband transition in optoelectrical semiconductors for IR wave,and surface plasmon polaritons induced nonequilibrium electrons for a millimeter/terahertz wave.The detector shows a strong response for an IR wave with a cutoff wavelength of 6.85 μm and a blackbody detectivity of 1.8×10^(9) Jones at room temperature.For a millimeter/terahertz wave,the detector demonstrates broadband detection from 0.032 THz(9.4 mm)to 0.330 THz(0.9 mm);that is,from Ka to the W and G bands,with a noise equivalent power of 1.0×10^(-13) W Hz^(-1/2) at 0.270 THz(1.1 mm)at room temperature.The detection performance is an order of magnitude better while decreasing the temperature to 170 K,the thermoelectric cooling level.Such detectors,capable of large scale and low cost,are promising for advanced uncooled multiband detection and imaging systems.展开更多
All-solid-state lithium-sulfur(Li-S)battery is regarded as next-generation high energy density and safety battery system.The key challenge is to develop a compatible high-performance solid-state electrolyte.Herein,a t...All-solid-state lithium-sulfur(Li-S)battery is regarded as next-generation high energy density and safety battery system.The key challenge is to develop a compatible high-performance solid-state electrolyte.Herein,a two birds with one stone strategy is proposed to simultaneously enhance Li+conductivity and polysulfide adsorptivity of poly(ethylene oxide)(PEO)-based polymer electrolyte via the integration of Nb_(2)CT_(x)MXene.Moreover,the sheet size of Nb_(2)CT_(x)MXene is crucial for the enhancement of Li^(+)conductivity and polysulfide adsorptivity,attributing to the difference in a specific surface area related to the percolation effect.By tuning the sheet size of Nb_(2)CT_(x)MXene from 500-300 nm to below 100 nm,the ionic conductivity of the PEO electrolyte is increased to2.62×10^(-4)S·cm^(-1)with improved Li+transference number of 0.37 at 600C.Furthermore,theoretical calculation and X-ray photoelectron spectroscopy(XPS)conjointly prove that poly sulfides could be effectively adsorbed by Nb2CTxnanosheets via forming Nb-S bonding to inhibit their shuttle in the PEO framework.As a result,the all-solid-state Li-S cell exhibits an initial capacity of 1149 mAh·g^(-1)at 0.5C and good cycling stability with 491 mAh·g^(-1)after 200 cycles.The results demonstrate the necessity of polysulfide inhibition and the application of Nb_(2)CT_(x)MXene in PEO-based electrolytes for all-solid-state Li-S batteries.展开更多
0 INTRODUCTION Skarn deposits,one of the most important ore types in the Earth's crust,are mined for a range of metals,including Cu,Au,Fe,W,Sn,and Mo(Chang et al.,2019;Meinert et al.,2005).Precise dating of the mi...0 INTRODUCTION Skarn deposits,one of the most important ore types in the Earth's crust,are mined for a range of metals,including Cu,Au,Fe,W,Sn,and Mo(Chang et al.,2019;Meinert et al.,2005).Precise dating of the mineralization is critical for understanding skarn ore formation(Stein et al.,2001;Mao et al.,1999).展开更多
基金the National Natural Science Foundation of China(Grant No.62375032)the Natural Science Foundation of Chongqing(Grant No.CSTB2023TIADKPX0017)+2 种基金the Open Fund of the State Key Laboratory of High Field Laser Physics(Shanghai Institute of Optics and Fine Mechanics)the China Postdoctoral Science Foundation(Grant No.BX20230355)the Department of Education of Guizhou Province(Guizhou Teaching and Technology[2023]015)。
文摘Metal halide perovskites(MHP)are potential candidates for the photocatalytic reduction of CO_(2)due to their long photogenerated carrier lifetime and charge diffusion length.However,the conventional long-chain ligand impedes the adsorption and activation of CO_(2)molecules in practical applications.Here,a ligand modulation technology is employed to enhance the photocatalytic CO_(2)reduction activity of lead-free Cs_(2)AgInCl_(6)microcrystals(MCs).The Cs_(2)AgInCl_(6)MCs passivated by Oleic acid(OLA)and Octanoic acid(OCA)are used for photocatalytic CO_(2)reduction.The results show that the surface defects and electronic properties of Cs_(2)AgInCl_(6)MCs can be adjusted through ligand modulation.Compared with the OLA-Cs_(2)AgInCl_(6),the OCA-Cs_(2)AgInCl_(6)catalyst demonstrated a significant improvement in the catalytic yield of CO and CH_(4).The CO and CH_(4)catalytic yields of OCA-Cs_(2)AgInCl_(6)reached 171.88 and34.15μmol g^(-1)h^(-1)which were 2.03 and 12.98 times higher than those of OLA-Cs_(2)AgInCl_(6),and the total electron consumption rate of OCA-Cs_(2)AgInCl_(6)was 615.2μmol g^(-1)h^(-1)which was 3.25 times higher than that of OLA-Cs_(2)AgInCl_(6).Furthermore,in situ diffuse reflectance infrared Fourier transform spectra revealed the enhancement of photocatalytic activity in Cs_(2)AgInCl_(6)MCs induced by ligand modulation.This study illustrates the potential of lead-free Cs_(2)AgInCl_(6)MCs for efficient photocatalytic CO_(2)reduction and provides a ligand modulation strategy for the active promotion of MHP photocatalysts.
文摘BACKGROUND Synaptotagmins(SYTs)are a family of 17 membrane transporters that function as calcium ion sensors during the release of Ca2+-dependent neurotransmitters and hormones.However,few studies have reported whether members of the SYT family play a role in glucose uptake in diabetic retinopathy(DR)through Ca2+/glucose transporter-1(GLUT1)and the possible regulatory mechanism of SYTs.AIM To elucidate the role of the SYT family in the regulation of glucose transport in retinal pigment epithelial cells and explore its potential as a therapeutic target for the clinical management of DR.METHODS DR was induced by streptozotocin in C57BL/6J mice and by high glucose medium in human retinal pigment epithelial cells(ARPE-19).Bioinformatics analysis,reverse transcriptase-polymerase chain reaction,Western blot,flow cytometry,ELISA,HE staining,and TUNEL staining were used for analysis.RESULTS Six differentially expressed proteins(SYT2,SYT3,SYT4,SYT7,SYT11,and SYT13)were found between the DR and control groups,and SYT4 was highly expressed.Hyperglycemia induces SYT4 overexpression,manipulates Ca2+influx to induce GLUT1 fusion with the plasma membrane,promotes abnormal expression of the glucose transporter GLUT1 and excessive glucose uptake,induces ARPE-19 cell apoptosis,and promotes DR progression.Parkin deficiency inhibits the proteasomal degradation of SYT4 in DR,resulting in SYT4 accumulation and enhanced GLUT1 fusion with the plasma membrane,and these effects were blocked by oe-Parkin treatment.Moreover,dysregulation of the myelin transcription factor 1(Myt1)-induced transcription of SYT4 in DR further activated the SYT4-mediated stimulus-secretion coupling process,and this process was inhibited in the oe-MYT1-treated group.CONCLUSION Our study reveals the key role of SYT4 in regulating glucose transport in retinal pigment epithelial cells during the pathogenesis of DR and the underlying mechanism and suggests potential therapeutic targets for clinical DR.
文摘Addiction to nicotine, and possibly other tobacco constituents, is a major factor that contributes to the difficulties smokers face when attempting to quit smoking. Amongst the various subtypes of nicotinic acetylcholine receptors (nAChRs), the α4β2 subtype plays an important role in mediating the addiction process. The characterization of human α4β2-ligand binding interactions provides a molecular framework for understanding ligand-receptor interactions, rendering insights into mechanisms of nicotine addiction and may furnish a tool for efficiently identifying ligands that can bind the nicotine receptor. Therefore, we constructed a homology model of human α4β2 nAChR and performed molecular docking and molecular dynamics (MD) simulations to elucidate the potential human α4β2-ligand binding modes for eleven compounds known to bind to this receptor. Residues V96, L97 and F151 of the α4 subunit and L111, F119 and F121 of the β2 subunit were found to be involved in hydrophobic interactions while residues S153 and W154 of the α4 subunit were involved in the formation of hydrogen bonds between the receptor and respective ligands. The homology model and its eleven ligand-bound structures will be used to develop a virtual screening program for identifying tobacco constituents that are potentially addictive.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0204600)the National Natural Science Foundation of China(Grant No.51802352)the Fundamental Research Funds for the Central Universities of Central South University,China(Grant No.2018zzts355)
文摘The effect of a sandwiched cross-shaped metamaterial absorber(CMMA) on microwave absorption properties of the double-layered polyurethane foam absorber(PUFA) is investigated. Combining with the sandwiched CMMA, the bandwidth of -10-dB reflection loss for PUFA is broadened from 7.4 GHz to 9.1 GHz, which is attributed to the overlap of two absorption peaks originating from CMMA and PUFA, respectively. The values of the two absorption peaks located at 10.15 GHz and 14.7 GHz are -38.44 dB and -40.91 dB, respectively. Additionally, distribution of surface current,electromagnetic field and power loss density are introduced to investigate the absorption mechanism of the CMMA. The electromagnetic field distribution of the double-layered PUFA and the three-layered hybrid absorber are comparatively analyzed to ascertain the influence of CMMA. The results show that the proposed hybrid absorber can be applied to the anti-electromagnetic interference and stealth technology.
基金supported by the Guizhou Provincial Science and Technology Project(Qian Ke He Zhi Cheng[2019]2849,[2019]2028)Guiyang Baiyun District Science and Technology Plan Project Grant no.[2018]5J.
文摘Nylon 1212/organic montmorillonite(OMMT)nanocomposites were prepared using the melt compounding method.The morphology and dynamical mechanical properties of the nanocomposites were investigated using transmission electron microscope(TEM)and dynamic mechanical analysis(DMA).The storage modulus of nylon 1212/OMMT nanocomposites was increased with increasing OMMT.The flame retardant properties were characterized by cone calorimetry,scanning electron microscope(SEM)and X-ray photoelectron spectroscopy(XPS).The flame retardant properties were characterized using cone calorimetry,whereby nylon 1212/OMMT nanocomposites were improved compared with pure nylon 1212 because of the carbonaceous-silicate granular materials which were formed during combustion,thus proposing the flame retardant mechanism.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0204600)the Fundamental Research Funds for the Central Universities of Central South University,China(Grant No.2019zzts424)。
文摘An analytical drain current model on the basis of the surface potential is proposed for indium-gallium zinc oxide(InGaZnO)thin-film transistors(TFTs)with an independent dual-gate(IDG)structure.For a unified expression of carriers’distribution for the sub-threshold region and the conduction region,the concept of equivalent flat-band voltage and the Lambert W function are introduced to solve the Poisson equation,and to derive the potential distribution of the active layer.In addition,the regional integration approach is used to develop a compact analytical current-voltage model.Although only two fitting parameters are required,a good agreement is obtained between the calculated results by the proposed model and the simulation results by TCAD.The proposed current-voltage model is then implemented by using Verilog-A for SPICE simulations of a dual-gate InGaZnO TFT integrated inverter circuit.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LQ22E030016)the National Natural Science Foundation of China(Nos.52275137 and 51705467)+2 种基金the China Postdoctoral Science Foundation(No.2022M722831)the Postdoctoral Research Selected Funding Project of Zhejiang Province(No.ZJ2022063)the Self-Topic Fund of Zhejiang Normal University(No.2020ZS04).
文摘With the accelerated development of modern detection and communication technology,the multifunctional wearable materials with excellent electromagnetic interference(EMI)shielding,infrared stealth,and human monitoring for improving military combat capability have received extensive attention.In this work,the lightweight melamine foam(MF)@silver nanowires(AgNWs)-iron nanowires(FeNWs)(AgFe-MF)was fabricated by a vacuum-assisted dip-coating method.Due to the porous structure and synergistic electrical and magnetic losses,this lightweight(0.115 g/cm^(3))composite foam with an ultra-low filler content(0.62 vol.%)exhibited an ideal EMI shielding efficiency of 38.4 dB.On the other hand,the AgFe-MF realized a powerful multifunctional integration.The surface saturation temperature of the AgFe-MF reached 94.2℃under a low applied voltage of 1.8 V and remained extremely fast heating and cooling response and terrific working stability,resulting in excellent infrared stealth and camouflage effects.Furthermore,taking virtues of the elastic porous conductive architecture,the AgFe-MF was utilized as a piezoresistive sensor exhibiting board compressive interval of 0–1.62 kPa(50%strain)with a good sensitivity of 0.57 kPa^(−1).This work will provide new ideas and insights for developing multifunctional wearable devices in the fields of EMI shielding,thermal management,and piezoresistive sensing.
基金supported by the National Natural Science Foundation of China(51733008,51522308)。
文摘Passive cooling permits thermal management of near-zero energy consumption and low CO_(2)emissions.Despite significant progress of passive radiative coolers,comfortable and steady temperatures can hardly be achieved due to their inadequate daytime cooling power(below 0.2 k W m^(-2))yet over-cooling at night.Here,we provide a bright-white hydrogel that enables ondemand passive cooling by virtue of adaptive water evaporation and high solar reflectance up to 86.1%.Notably,theoretical cooling power determined by the evaporating rate can reach 1.25 k W m^(-2)in daytime but decreases dramatically at night.Hence sub-ambient temperature reduction of 11-13℃at noon yet nearly none at night are realized,with the diurnal temperature difference narrowed significantly.Moreover,effective cooling using colored hydrogels,and transition from evaporative cooling to solar heating have been demonstrated.This novel evaporative cooling approach will pave the way for smart passive coolers of high efficiency,colorful appearance,and low cost.
基金support from the National Natural Science Foundation of China (Grant No.U20A20291).
文摘When ultrasonically cutting honeycomb core curved parts,the tool face of the straight blade must be along the curved surface’s tangent direction at all times to ensure high-quality machining of the curved surface.However,given that the straight blade is a nonstandard tool,the existing computer-aided manufacturing technology cannot directly realize the above action requirement.To solve this problem,this paper proposed an algorithm for extracting a straight blade real-time tool face vector from a 5-axis milling automatically programmed tool location file,which can realize the tool location point and tool axis vector conversion from the flat end mill to the straight blade.At the same time,for the multi-solution problem of the rotation axis,the dependent axis rotation minimization algorithm was introduced,and the spindle rotation algorithm was proposed for the tool edge orientation problem when the straight blade is used to machine the curved part.Finally,on the basis of the MATLAB platform,the dependent axis rotation minimization algorithm and spindle rotation algorithm were integrated and compiled,and the straight blade ultrasonic cutting honeycomb core postprocessor was then developed.The model of the machine tool and the definition of the straight blade were conducted in the VERICUT simulation software,and the simulation machining of the equivalent entity of the honeycomb core can then be realized.The correctness of the numerical control program generated by the postprocessor was verified by machining and accuracy testing of the two designed features.Observation and analysis of the simulation and experiment indicate that the tool pose is the same under each working condition,and the workpieces obtained by machining also meet the corresponding accuracy requirements.Therefore,the postprocessor developed in this paper can be well adapted to the honeycomb core ultrasonic cutting machine tool and realize high-quality and high-efficient machining of honeycomb core composites.
基金Agency for Science,Technology and Research(SERC 1720700038,SERC A1883c0002)Ministry of Education—Singapore(2017-T1-002-117).
文摘Conventional photodetection converts light into electrical signals only in a single electromagnetic waveband.Multiband detection technology is highly desirable because it can handle multispectral information discrimination,identification,and processing.Current epitaxial solid-state multiband detection technologies are mainly within the IR wave range.Here,we report epitaxial indium antimonide on gallium arsenide for IR and millimeter/terahertz wave multiband photodetection.The photoresponse originates from interband transition in optoelectrical semiconductors for IR wave,and surface plasmon polaritons induced nonequilibrium electrons for a millimeter/terahertz wave.The detector shows a strong response for an IR wave with a cutoff wavelength of 6.85 μm and a blackbody detectivity of 1.8×10^(9) Jones at room temperature.For a millimeter/terahertz wave,the detector demonstrates broadband detection from 0.032 THz(9.4 mm)to 0.330 THz(0.9 mm);that is,from Ka to the W and G bands,with a noise equivalent power of 1.0×10^(-13) W Hz^(-1/2) at 0.270 THz(1.1 mm)at room temperature.The detection performance is an order of magnitude better while decreasing the temperature to 170 K,the thermoelectric cooling level.Such detectors,capable of large scale and low cost,are promising for advanced uncooled multiband detection and imaging systems.
基金financially supported by the State Key Laboratory of Powder Metallurgy,Hunan Provincial Natural Science Foundation of China(No.2020JJ4107)the InnovationDriven Project of Central South University(No.2020CX037)+2 种基金the Postgraduate Scientific Research Innovation Project of Hunan Province(No.QL20220021)the National Natural Science Foundation of China(No.51802352)the Science and Technology Innovation Leading Project of High-Tech Industry of Hunan Province,China(No.2020GK2067)。
文摘All-solid-state lithium-sulfur(Li-S)battery is regarded as next-generation high energy density and safety battery system.The key challenge is to develop a compatible high-performance solid-state electrolyte.Herein,a two birds with one stone strategy is proposed to simultaneously enhance Li+conductivity and polysulfide adsorptivity of poly(ethylene oxide)(PEO)-based polymer electrolyte via the integration of Nb_(2)CT_(x)MXene.Moreover,the sheet size of Nb_(2)CT_(x)MXene is crucial for the enhancement of Li^(+)conductivity and polysulfide adsorptivity,attributing to the difference in a specific surface area related to the percolation effect.By tuning the sheet size of Nb_(2)CT_(x)MXene from 500-300 nm to below 100 nm,the ionic conductivity of the PEO electrolyte is increased to2.62×10^(-4)S·cm^(-1)with improved Li+transference number of 0.37 at 600C.Furthermore,theoretical calculation and X-ray photoelectron spectroscopy(XPS)conjointly prove that poly sulfides could be effectively adsorbed by Nb2CTxnanosheets via forming Nb-S bonding to inhibit their shuttle in the PEO framework.As a result,the all-solid-state Li-S cell exhibits an initial capacity of 1149 mAh·g^(-1)at 0.5C and good cycling stability with 491 mAh·g^(-1)after 200 cycles.The results demonstrate the necessity of polysulfide inhibition and the application of Nb_(2)CT_(x)MXene in PEO-based electrolytes for all-solid-state Li-S batteries.
基金financially supported by the National Key Research and Development Program of China(No.2023YFF0804200)the MOST Special Fund(No.GKZ22Y607)from the GPMR,China University of Geosciences(Wuhan)。
文摘0 INTRODUCTION Skarn deposits,one of the most important ore types in the Earth's crust,are mined for a range of metals,including Cu,Au,Fe,W,Sn,and Mo(Chang et al.,2019;Meinert et al.,2005).Precise dating of the mineralization is critical for understanding skarn ore formation(Stein et al.,2001;Mao et al.,1999).