Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PT...Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PTPN11, is widely expressed in the human body and plays a role in inflammation through various mechanisms. Therefore, SHP2 is considered a potential target for the treatment of inflammation-related diseases. However, its role in secondary inflammation after spinal cord injury remains unclear. In this study, SHP2 was found to be abundantly expressed in microglia at the site of spinal cord injury. Inhibition of SHP2 expression using siRNA and SHP2 inhibitors attenuated the microglial inflammatory response in an in vitro lipopolysaccharide-induced model of inflammation. Notably, after treatment with SHP2 inhibitors, mice with spinal cord injury exhibited significantly improved hind limb locomotor function and reduced residual urine volume in the bladder. Subsequent in vitro experiments showed that, in microglia stimulated with lipopolysaccharide, inhibiting SHP2 expression promoted M2 polarization and inhibited M1 polarization. Finally, a co-culture experiment was conducted to assess the effect of microglia treated with SHP2 inhibitors on neuronal cells. The results demonstrated that inflammatory factors produced by microglia promoted neuronal apoptosis, while inhibiting SHP2 expression mitigated these effects. Collectively, our findings suggest that SHP2 enhances secondary inflammation and neuronal damage subsequent to spinal cord injury by modulating microglial phenotype. Therefore, inhibiting SHP2 alleviates the inflammatory response in mice with spinal cord injury and promotes functional recovery postinjury.展开更多
This work uses thermal polymerization of urea nitrate,oxyacetic acid and urea as the raw material to prepare ultra-thin porous carbon nitride with carbon defects and C-O band(OA-UN-CN).Density functional theory(DFT)ca...This work uses thermal polymerization of urea nitrate,oxyacetic acid and urea as the raw material to prepare ultra-thin porous carbon nitride with carbon defects and C-O band(OA-UN-CN).Density functional theory(DFT)calculations showed OA-UN-CN had narrower band gap,faster electron transport and a new internal construction electric field.Additionally,the prepared OA-UN-CN significantly enhanced photocatalytic activation of peroxymonosulfate(PMS)due to enhanced light absorption performance and faster electron overflow.As the result,the OA-UN-CN/PMS could entirely degrade bisphenol A(BPA)within 30 min,where the photodegradation rate was 81.8 and 7.9 times higher than that of g-C_(3)N_(4)and OA-UN-CN,respectively.Beyond,the OA-UN-CN/PMS could likewise degrade other bisphenol pollutants and sodium lignosulfonate efficiently.We suggested possible photocatalytic degradation pathways accordingly and explored the toxicity of its degradation products.This work provides a new idea on the development of advanced photocatalytic oxidation processes for the treatment of bisphenol pollutants and lignin derivatives,via a metal-free photothermal-catalyst.展开更多
Polypores play a cru cial role in energy recycling and forest regeneration in forest ecosystems.The majority of them are wood degraders;some are forest pathogens and others are ectomycorrhizal symbionts.The basidiocar...Polypores play a cru cial role in energy recycling and forest regeneration in forest ecosystems.The majority of them are wood degraders;some are forest pathogens and others are ectomycorrhizal symbionts.The basidiocarps provide food and shelter for many organisms,mostly invertebrates,but also some vertebrates,as well as food and medicine for humans.Despite extensive research on the species diversity and phylogenetic relationships of polypores in recent years,there remains a lack of comprehensive understanding of their distribution patterns and species composition at the large scale.Checklists of polypores from the tropical zone,including tropical Africa,tropical America,and tropical Asia,were analyzed for species diversity,distribution patterns,major taxa,and nutritional modes.A total of 1,902 polypore species was found in the three regions,representing 8 orders,46families,and 250 genera of Agaricomycetes.The orders Polyporales(especially the family Polyporaceae)and Hymenochaetales(especially the family Hymenochaetaceae)had the most prolific taxa,with their species accounting for 93.4%of the total polypores listed.Each of 1,565(or 82.3%)of the total 1,902 species were found in only one of the three regions studied,and we treat them temporarily as"regional endemic species".Only 141species were shared among all three regions,accounting for a mere 7.4%.Tropical Africa and tropical America had the greatest number of shared species and the highest S?rensen similarity index(SC)value.Tropical forests had a higher species richness compared with temperate to boreal forests of the Northern Hemisphere,and in addition,also a higher proportion of white rot polypores compared to brown rot and ectomycorrhizal species.This study outlines the distribution patterns and species diversity of polypores in the world,shedding light on their ecological significance in diverse ecosystems.展开更多
AIM:To describe the distribution of ocular biometrics and to evaluate its associations with refractive error and to assess the contribution from ocular parameters to refractive error among Chinese myopic children.METH...AIM:To describe the distribution of ocular biometrics and to evaluate its associations with refractive error and to assess the contribution from ocular parameters to refractive error among Chinese myopic children.METHODS:This cross-sectional study evaluated subjects aged 8-12y.Keratometry,ocular biometry,and cycloplegic autorefraction were performed on each subject.Spherical equivalent refraction(SER)and ocular biometrics were assessed as a function of age and gender.The Pearson correlation analysis between SER and ocular biometrics was carried out.Multiple linear regression was performed to analyze the association between SER and ocular parameters.RESULTS:A total of 689 out of 735 participants(321 boys,48.1%)were analyzed,with a mean SER of-2.98±1.47 diopter(D).Axial length(AL),anterior chamber depth(ACD),corneal radius of curvature(CR),horizontal visible iris diameter(HVID),central corneal thickness(CCT)and lens power(LP)showed normal distribution.The AL,AL/CR ratio,ACD and CR increased from 8 to 12y of age,while SER and LP decreased,HVID and CCT remained stable.There was no difference in gender.SER decreased by 0.929 D for every 1 mm increase in AL and decreased by 1.144 D for every 0.1 increase in AL/CR ratio.The Pearson correlation coefficient between SER and AL was-0.538(P<0.01)and-0.747(P<0.01)between SER and AL/CR ratio.For the SER variance,AL explained 29.0%,AL/CR ratio explained 55.7%,while AL,CR,ACD and LP explained 99.3%after adjusting for age and gender.CONCLUSION:The AL,CR,ACD and LP are the most important determinants of myopic refractive error during myopia progression.展开更多
目的:研究分别采用单焦框架眼镜与角膜塑形镜矫正低度近视性屈光参差的儿童单眼及双眼调节的差异。方法:回顾性研究。收集2019-11/2020-04于我院眼科门诊就诊的低度近视性屈光参差(1.0D≤双眼等效球镜差<2.5D)儿童47例94眼,其中配戴...目的:研究分别采用单焦框架眼镜与角膜塑形镜矫正低度近视性屈光参差的儿童单眼及双眼调节的差异。方法:回顾性研究。收集2019-11/2020-04于我院眼科门诊就诊的低度近视性屈光参差(1.0D≤双眼等效球镜差<2.5D)儿童47例94眼,其中配戴框架眼镜者27例54眼作为A组,配戴角膜塑形镜者20例40眼作为B组。分别记录并比较两组患儿矫正1mo后的矫正视力及调节参数[调节反应(AR)、调节灵活度(AF)、调节幅度(AMP)]的差异。结果:两组患儿AR测量值均为正值,表现为调节滞后,A组患儿屈光高度眼调节滞后量显著高于屈光低度眼(0.63±0.21D vs 0.25±0.34D,P<0.001),但B组患儿双眼调节滞后量无差异(P=0.104),且两组患儿屈光高度眼与屈光低度眼单眼矫正视力和单眼AMP均无差异(P>0.05)。A组患儿双眼AR差值高于B组(0.38±0.36D vs 0.10±0.26D,P=0.005),双眼AF低于B组(8.22±1.15c/min vs 9.95±0.89c/min,P<0.001),但两组患儿双眼AMP无明显差异(P=0.280)。结论:低度近视性屈光参差儿童配戴角膜塑形镜比单焦框架眼镜矫正可获得更高的双眼调节灵活度,降低双眼调节反应差值,从而维持更协调的双眼调节功能。展开更多
Patients with type 2 diabetes mellitus(T2 DM) often have cognitive impairment and structural brain abnormalities.The magnetic resonance imaging(MRI)-based brain atrophy and lesion index can be used to evaluate common ...Patients with type 2 diabetes mellitus(T2 DM) often have cognitive impairment and structural brain abnormalities.The magnetic resonance imaging(MRI)-based brain atrophy and lesion index can be used to evaluate common brain changes and their correlation with cognitive function,and can therefore also be used to reflect whole-brain structural changes related to T2 DM.A total of 136 participants(64 men and 72 women,aged 55–86 years) were recruited for our study between January 2014 and December 2016.All participants underwent MRI and Mini-Mental State Examination assessment(including 42 healthy control,38 T2 DM without cognitive impairment,26 with cognitive impairment but without T2 DM,and 30 T2 DM with cognitive impairment participants).The total and sub-category brain atrophy and lesion index scores in patients with T2 DM with cognitive impairment were higher than those in healthy controls.Differences in the brain atrophy and lesion index of gray matter lesions and subcortical dilated perivascular spaces were found between non-T2 DM patients with cognitive impairment and patients with T2 DM and cognitive impairment.After adjusting for age,the brain atrophy and lesion index retained its capacity to identify patients with T2 DM with cognitive impairment.These findings suggest that the brain atrophy and lesion index,based on T1-weighted and T2-weighted imaging,is of clinical value for identifying patients with T2 DM and cognitive impairment.Gray matter lesions and subcortical dilated perivascular spaces may be potential diagnostic markers of T2 DM that is complicated by cognitive impairment.This study was approved by the Medical Ethics Committee of University of South China(approval No.USC20131109003) on November 9,2013,and was retrospectively registered with the Chinese Clinical Trial Registry(registration No.Chi CTR1900024150) on June 27,2019.展开更多
Lignocellulosic biomass photoreforming is a promising and alternative strategy for both sustainable H_(2) production and biomass valorization with infinite solar energy.However,harsh reaction conditions(high alkalinit...Lignocellulosic biomass photoreforming is a promising and alternative strategy for both sustainable H_(2) production and biomass valorization with infinite solar energy.However,harsh reaction conditions(high alkalinity or toxic organic solvents),with low biomass conversion and selectivity are often reported in literature.In this work,we report glucose photoreforming for coproduction of H_(2) and arabinose with improved selectivity under neutral condition using carbon quantum dots(CQDs)modified TiO_(2) composites.We show that the conventional CQDs fabricated by a facile one-step hydrothermal process could be endowed with novel color changing property,due to the particle aggregation under the regulation of incident light.The as-fabricated CQDs/TiO_(2) composites with certain colored CQDs could greatly improve glucose to arabinose conversion selectivity(-75%)together with efficient hydrogen evolution(up to 2.43 mmolh^(-1)g^(-1))in water.The arabinose is produced via the direct C1-C2 α-scissions mechanism with reactive oxygen species of·O_(2)^(-) and·OH,as evidenced by ^(13)C labeled glucose and the electron spin-resonance(ESR)studies,respectively.This work not only sheds new lights on CQDs assisted photobiorefinery for biomass valorization and H_(2) coproduction,but also opens the door for rationale design of different colored CQDs and their potential applications for solar energy utilization in the noble-metal-free system.展开更多
DEAR EDITOR,Genomic imprinting often results in parent-of-origin specific differential expression of maternally and paternally inherited alleles and plays an essential role in mammalian development and growth.Mammalia...DEAR EDITOR,Genomic imprinting often results in parent-of-origin specific differential expression of maternally and paternally inherited alleles and plays an essential role in mammalian development and growth.Mammalian genomic imprinting has primarily been studied in mice and humans,with only limited information available for pigs.To systematically characterize this phenomenon and evaluate imprinting status between different species,we investigated imprinted genes on a genome-wide scale in pig brain tissues.展开更多
BACKGROUND Visceral leishmaniasis related-hemophagocytic lymphohistiocytosis(VL-HLH)is a hemophagocytic syndrome caused by Leishmania infection.VL-HLH is rare,especially in nonendemic areas where the disease is severe...BACKGROUND Visceral leishmaniasis related-hemophagocytic lymphohistiocytosis(VL-HLH)is a hemophagocytic syndrome caused by Leishmania infection.VL-HLH is rare,especially in nonendemic areas where the disease is severe,and mortality rates are high.The key to diagnosing VL-HLH is to find the pathogen;therefore,the Leishmania must be accurately identified for timely clinical treatment.CASE SUMMARY We retrospectively analyzed the clinical data,laboratory examination results,and bone marrow cell morphology of two children with VL-HLH diagnosed via bone marrow cell morphology at Kunming Children’s Hospital of Yunnan,China.Both cases suspected of having malignant tumors at other hospitals and who were unresponsive to treatment were transferred to Kunming Children’s Hospital.They are Han Chinese girls,one was 2 years old and the other one is 9 mo old.They had repeated fevers,pancytopenia,hepatosplenomegaly,hypertriglyceridemia,and hypofibrinogenemia over a long period and met the HLH-2004 criteria.Their HLH genetic test results were negative.Both children underwent chemotherapy as per the HLH-2004 chemotherapy regimen,but it was ineffective and accompanied by serious infections.We found Leishmania amastigotes in their bone marrow via morphological examination of their bone marrow cells,which showed hemophagocytic cells;thus,the children were diagnosed with VL-HLH.After being transferred to a specialty hospital for treatment,the condition was well-controlled.CONCLUSION Morphological examination of bone marrow cells plays an important role in diagnosing VL-HLH.When clinically diagnosing secondary HLH,VL-HLH should be considered in addition to common pathogens,especially in patients for whom HLH-2004 chemotherapy regimens are ineffective.For infants and young children,bone marrow cytology examinations should be performed several times and as early as possible to find the pathogens to reduce potential misdiagnoses.展开更多
Biomass photorefinery to produce fuels and valuable chemicals is a promising approach to alleviating the energy crisis and achieving carbon neutrality.However,precisely modulating the photocatalytic conversion of biom...Biomass photorefinery to produce fuels and valuable chemicals is a promising approach to alleviating the energy crisis and achieving carbon neutrality.However,precisely modulating the photocatalytic conversion of biomass into value-added chemicals is still challenging.Here we demonstrate a feasible strategy to selectively produce arabinose via oriented glucose oxidation to gluconic acid,followed by the decarboxylation process for C1-C2 bond cleavage.To realize this process,gold nanoparticles(Au NPs)modified carbon nitride(AuCN)is rationally designed to regulate the electron transfer behavior of pristine carbon nitride from a two-electron pathway to a single-electron pathway.This allows selective production of superoxide(·O_(2)^(-))from oxygen reduction reaction which triggers glucose oxidation into gluconic acid.In addition,the arabinose production is synergistically promoted by the improved charge separation efficiency and extended visible-light absorption via localized surface plasmon resonance(LSPR)of Au nanoparticles.This work demonstrates an example of a mechanism-guided catalyst design to improve biofuels/chemicals production from biomass photorefinery.展开更多
In this contribution, we present an all-optical quantitative framework for bioluminescence tomography with non-contact measurement. The framework is comprised of four indispensable steps: extraction of the geometrica...In this contribution, we present an all-optical quantitative framework for bioluminescence tomography with non-contact measurement. The framework is comprised of four indispensable steps: extraction of the geometrical structures of the subject, light flux reconstruction on arbitrary surface, calibration and quantification of the surface light flux and internal bioluminescence reconstruction. In particular, the geometrical structures are retrieved using a completely optical method and captured under identical viewing conditions with the bioluminescent images. As a result, the proposed framework avoids the utilization of computed tomography or magnetic resonance imaging to provide the geometrical structures. On the basis of experimental measurements, we evaluate the performance of the proposed all-optical quantitative framework using a mouse shaped phantom. Preliminary result reveals the potential and feasibility of the proposed framework for bioluminescence tomography.展开更多
LnVO_(4)(Ln=La,Ce,Pr,Nd,etc.)is an emerging photocatalyst for solving the energy and environmental crisis,due to its suitable band gap,special valence electronic structure,high thermal,and chemical sta-bility,as well ...LnVO_(4)(Ln=La,Ce,Pr,Nd,etc.)is an emerging photocatalyst for solving the energy and environmental crisis,due to its suitable band gap,special valence electronic structure,high thermal,and chemical sta-bility,as well as excellent photocatalytic performance.Although exhibiting great promise,the low solar power employment efficiency of LnVO_(4) materials has limited its further development and application.However,recent breakthroughs have been made in both heightening its photocatalysis efficiency and elu-cidating the essential photocatalytic mechanisms.Therefore,it is important to review and summarize recent research progress on LnVO_(4) nanomaterials and their applications.In this review,we systemat-ically report on and examine recent computational and experimental advances in the modification of LnVO_(4)-based photocatalysts through morphology adjustment,elemental doping,phase structure modula-tion,crystal facet modulation,defect modulation,heterostructure,and beyond.Thereafter,we outline cur-rent promising photocatalytic applications and discuss challenges/expected upcoming research aims for LnVO_(4)-based photocatalysts.Our goal is to furnish guidance for the reasonable design and preparation of highly efficient LnVO_(4)(Ln=La,Ce,Pr,Nd,etc.)-based photocatalytic materials for sundry applications.展开更多
Rational design of extractant structure to improve the extraction and separation capacity of rare earth elements(REEs)is a long-standing challenge.Herein,a new strategy was proposed to improve the stability of the che...Rational design of extractant structure to improve the extraction and separation capacity of rare earth elements(REEs)is a long-standing challenge.Herein,a new strategy was proposed to improve the stability of the chelating structure formed by malonamide and REEs.The stability of the chelating structure is greatly improved by using a double-ring framework structure which makes the two carbonyl groups of malonamide unable to rotate freely and both of them point to the metal ion position.Three benzyl groups were used to construct the hydrophobicity of the extractant and the organic shell of the extracted species.Tribenzylhexahydro-pyrrolo-pyridine-dione(THPPD)was designed and synthesized.The structure reduces the energy consumed by rotating carbonyl group in the coordination with metal ions and then improves the extraction ability of extractant.The crystal structure was preorganized as expected,with the two carbonyls pointing in a favorable coordination direction to the structural complement of the metal ion.The extraction behaviors of REEs with THPPD in a nitric acid medium were studied.Compared with N,N’-dibenzyl-N,N’-dimethylmalonamide(DBDM-MA)with a chain structure,the extraction capacity of THPPD is 360 times higher than that of DBDM-MA at 5.0 mol/L sodium nitrate.Furthermore,the binding energy and Gibbs free energy were investigated by density functional theory(DFT)in conjunction with the B3LYP.The theoretical results show that THPPD has more effective interaction with Pr(NO_(3))3 than DBDM-MA.The construction of chelating groups conformation is a worthy direction to improve the coordination ability and even selectivity of extractant.展开更多
Zygomycetes are phylogenetically early diverging,ecologically diverse,industrially valuable,agriculturally beneficial,and clinically pathogenic fungi.Although new phyla and subphyla have been constantly established to...Zygomycetes are phylogenetically early diverging,ecologically diverse,industrially valuable,agriculturally beneficial,and clinically pathogenic fungi.Although new phyla and subphyla have been constantly established to accommodate spe-cific members and a subkingdom Mucoromyceta,comprising Calcarisporiellomycota,Glomeromycota,Mortierellomycota and Mucoromycota,was erected to unite core zygomycetous fungi,phylogenetic relationships within phyla have not been well resolved.Taking account of the information of monophyly and divergence time estimated from ITS and LSU rDNA sequences,the present study updates the classification framework of the phylum Mucoromycota from the class down to the generic rank:three classes,three orders,20 families(including five new families Circinellaceae,Protomycocladaceae,Rhizomucoraceae,Syzygitaceae and Thermomucoraceae)and 64 genera.The taxonomic hierarchy was calibrated with estimated divergence times:phylum earlier than 617 Mya,classes and orders earlier than 547 Mya,families earlier than 199 Mya,and genera earlier than 12 Mya.Along with this outline,all genera of Mucoromycota are annotated and 58 new species are described.In addition,three new combinations are proposed.In this study,we update the taxonomic backbone of the phylum Mucoromycota and reinforce its phylogeny.We also contribute numerous new taxa and enrich the diversity of Mucoromycota.展开更多
Electron donors are widely exploited in visible-light photocatalytic hydrogen production.As a typical electron donor pair and often the first choice for hydrogen production,the sodium sulfide-sodium sulfite pair has b...Electron donors are widely exploited in visible-light photocatalytic hydrogen production.As a typical electron donor pair and often the first choice for hydrogen production,the sodium sulfide-sodium sulfite pair has been extensively used.However,the resultant thiosulfate ions consume the photogenerated electrons to form an undesirable pseudocyclic electron transfer pathway during the photocatalytic process,strongly limiting the solar energy conversion efficiency.Here,we report novel and bioinspired electron donor pairs offering a noncyclic electron transfer pathway that provides more electrons without the consumption of the photogenerated electrons.Compared to the state-of-the-art electron donor pair Na_(2)S-Na_(2)SO_(3),these novel Na_(2)S-NaH_(2)PO_(2)and Na_(2)S-NaNO_(2)electron donor pairs enable an unprecedented enhancement of up to 370%and 140%for average photocatalytic H_(2)production over commercial CdS nanoparticles,and they are versatile for a large series of photocatalysts for visible-light water splitting.The discovery of these novel electron donor pairs can lead to a revolution in photocatalysis and is of great significance for industrial visible-light-driven H_(2)production.展开更多
基金supported by the Natural Science Research Project of Anhui Province University, No.2023AH040394 (to TY)Hefei Comprehensive National Science Center Leading Medicine and Frontier Technology Research Institute Project, No.2023IHM01073 (to TY)the Natural Science Foundation of Anhui Province, Nos.2308085QH258 (to JW), 2008085MH246 (to TY)。
文摘Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PTPN11, is widely expressed in the human body and plays a role in inflammation through various mechanisms. Therefore, SHP2 is considered a potential target for the treatment of inflammation-related diseases. However, its role in secondary inflammation after spinal cord injury remains unclear. In this study, SHP2 was found to be abundantly expressed in microglia at the site of spinal cord injury. Inhibition of SHP2 expression using siRNA and SHP2 inhibitors attenuated the microglial inflammatory response in an in vitro lipopolysaccharide-induced model of inflammation. Notably, after treatment with SHP2 inhibitors, mice with spinal cord injury exhibited significantly improved hind limb locomotor function and reduced residual urine volume in the bladder. Subsequent in vitro experiments showed that, in microglia stimulated with lipopolysaccharide, inhibiting SHP2 expression promoted M2 polarization and inhibited M1 polarization. Finally, a co-culture experiment was conducted to assess the effect of microglia treated with SHP2 inhibitors on neuronal cells. The results demonstrated that inflammatory factors produced by microglia promoted neuronal apoptosis, while inhibiting SHP2 expression mitigated these effects. Collectively, our findings suggest that SHP2 enhances secondary inflammation and neuronal damage subsequent to spinal cord injury by modulating microglial phenotype. Therefore, inhibiting SHP2 alleviates the inflammatory response in mice with spinal cord injury and promotes functional recovery postinjury.
基金the National Natural Science Foundation of China(No.22076068,8111310014)(China)the University of Calgary’s Canada First Research Excellence Fund(CFREF)program(Canada)for financial support。
文摘This work uses thermal polymerization of urea nitrate,oxyacetic acid and urea as the raw material to prepare ultra-thin porous carbon nitride with carbon defects and C-O band(OA-UN-CN).Density functional theory(DFT)calculations showed OA-UN-CN had narrower band gap,faster electron transport and a new internal construction electric field.Additionally,the prepared OA-UN-CN significantly enhanced photocatalytic activation of peroxymonosulfate(PMS)due to enhanced light absorption performance and faster electron overflow.As the result,the OA-UN-CN/PMS could entirely degrade bisphenol A(BPA)within 30 min,where the photodegradation rate was 81.8 and 7.9 times higher than that of g-C_(3)N_(4)and OA-UN-CN,respectively.Beyond,the OA-UN-CN/PMS could likewise degrade other bisphenol pollutants and sodium lignosulfonate efficiently.We suggested possible photocatalytic degradation pathways accordingly and explored the toxicity of its degradation products.This work provides a new idea on the development of advanced photocatalytic oxidation processes for the treatment of bisphenol pollutants and lignin derivatives,via a metal-free photothermal-catalyst.
基金supported by the National Natural Science Foundation of China(Project Nos.U23A20142 and 32370013)Hainan Province Science and Technology Special Fund(ZDYF2023RDYL01)+1 种基金the Hainan Institute of National Park,HINP,KY-24ZK02the Yunnan Province Expert Workstation Program(No.202205AF150014)。
文摘Polypores play a cru cial role in energy recycling and forest regeneration in forest ecosystems.The majority of them are wood degraders;some are forest pathogens and others are ectomycorrhizal symbionts.The basidiocarps provide food and shelter for many organisms,mostly invertebrates,but also some vertebrates,as well as food and medicine for humans.Despite extensive research on the species diversity and phylogenetic relationships of polypores in recent years,there remains a lack of comprehensive understanding of their distribution patterns and species composition at the large scale.Checklists of polypores from the tropical zone,including tropical Africa,tropical America,and tropical Asia,were analyzed for species diversity,distribution patterns,major taxa,and nutritional modes.A total of 1,902 polypore species was found in the three regions,representing 8 orders,46families,and 250 genera of Agaricomycetes.The orders Polyporales(especially the family Polyporaceae)and Hymenochaetales(especially the family Hymenochaetaceae)had the most prolific taxa,with their species accounting for 93.4%of the total polypores listed.Each of 1,565(or 82.3%)of the total 1,902 species were found in only one of the three regions studied,and we treat them temporarily as"regional endemic species".Only 141species were shared among all three regions,accounting for a mere 7.4%.Tropical Africa and tropical America had the greatest number of shared species and the highest S?rensen similarity index(SC)value.Tropical forests had a higher species richness compared with temperate to boreal forests of the Northern Hemisphere,and in addition,also a higher proportion of white rot polypores compared to brown rot and ectomycorrhizal species.This study outlines the distribution patterns and species diversity of polypores in the world,shedding light on their ecological significance in diverse ecosystems.
基金Supported by National Natural Science Foundation of China(No.82171092No.82371087)+1 种基金Capital’s Funds for Health Improvement and Research(No.2022-1G-4083)National Key R&D Program of China(No.2021YFC2702100).
文摘AIM:To describe the distribution of ocular biometrics and to evaluate its associations with refractive error and to assess the contribution from ocular parameters to refractive error among Chinese myopic children.METHODS:This cross-sectional study evaluated subjects aged 8-12y.Keratometry,ocular biometry,and cycloplegic autorefraction were performed on each subject.Spherical equivalent refraction(SER)and ocular biometrics were assessed as a function of age and gender.The Pearson correlation analysis between SER and ocular biometrics was carried out.Multiple linear regression was performed to analyze the association between SER and ocular parameters.RESULTS:A total of 689 out of 735 participants(321 boys,48.1%)were analyzed,with a mean SER of-2.98±1.47 diopter(D).Axial length(AL),anterior chamber depth(ACD),corneal radius of curvature(CR),horizontal visible iris diameter(HVID),central corneal thickness(CCT)and lens power(LP)showed normal distribution.The AL,AL/CR ratio,ACD and CR increased from 8 to 12y of age,while SER and LP decreased,HVID and CCT remained stable.There was no difference in gender.SER decreased by 0.929 D for every 1 mm increase in AL and decreased by 1.144 D for every 0.1 increase in AL/CR ratio.The Pearson correlation coefficient between SER and AL was-0.538(P<0.01)and-0.747(P<0.01)between SER and AL/CR ratio.For the SER variance,AL explained 29.0%,AL/CR ratio explained 55.7%,while AL,CR,ACD and LP explained 99.3%after adjusting for age and gender.CONCLUSION:The AL,CR,ACD and LP are the most important determinants of myopic refractive error during myopia progression.
文摘目的:研究分别采用单焦框架眼镜与角膜塑形镜矫正低度近视性屈光参差的儿童单眼及双眼调节的差异。方法:回顾性研究。收集2019-11/2020-04于我院眼科门诊就诊的低度近视性屈光参差(1.0D≤双眼等效球镜差<2.5D)儿童47例94眼,其中配戴框架眼镜者27例54眼作为A组,配戴角膜塑形镜者20例40眼作为B组。分别记录并比较两组患儿矫正1mo后的矫正视力及调节参数[调节反应(AR)、调节灵活度(AF)、调节幅度(AMP)]的差异。结果:两组患儿AR测量值均为正值,表现为调节滞后,A组患儿屈光高度眼调节滞后量显著高于屈光低度眼(0.63±0.21D vs 0.25±0.34D,P<0.001),但B组患儿双眼调节滞后量无差异(P=0.104),且两组患儿屈光高度眼与屈光低度眼单眼矫正视力和单眼AMP均无差异(P>0.05)。A组患儿双眼AR差值高于B组(0.38±0.36D vs 0.10±0.26D,P=0.005),双眼AF低于B组(8.22±1.15c/min vs 9.95±0.89c/min,P<0.001),但两组患儿双眼AMP无明显差异(P=0.280)。结论:低度近视性屈光参差儿童配戴角膜塑形镜比单焦框架眼镜矫正可获得更高的双眼调节灵活度,降低双眼调节反应差值,从而维持更协调的双眼调节功能。
基金supported by the National Natural Science Foundation of China,No.81271538 (to SNP)345 Talent Project and the Natural Science Foundation of Liaoning Province of China,No.2019-ZD-0794 (to SNP)+1 种基金the Natural Science Foundation of Hunan Province of China,Nos.2017JJ2225 (to JCL),2018JJ2357 (to GHL)Hunan Provincial Science and Technology Innovation Program of China,No.2017SK50203 (to HZ)。
文摘Patients with type 2 diabetes mellitus(T2 DM) often have cognitive impairment and structural brain abnormalities.The magnetic resonance imaging(MRI)-based brain atrophy and lesion index can be used to evaluate common brain changes and their correlation with cognitive function,and can therefore also be used to reflect whole-brain structural changes related to T2 DM.A total of 136 participants(64 men and 72 women,aged 55–86 years) were recruited for our study between January 2014 and December 2016.All participants underwent MRI and Mini-Mental State Examination assessment(including 42 healthy control,38 T2 DM without cognitive impairment,26 with cognitive impairment but without T2 DM,and 30 T2 DM with cognitive impairment participants).The total and sub-category brain atrophy and lesion index scores in patients with T2 DM with cognitive impairment were higher than those in healthy controls.Differences in the brain atrophy and lesion index of gray matter lesions and subcortical dilated perivascular spaces were found between non-T2 DM patients with cognitive impairment and patients with T2 DM and cognitive impairment.After adjusting for age,the brain atrophy and lesion index retained its capacity to identify patients with T2 DM with cognitive impairment.These findings suggest that the brain atrophy and lesion index,based on T1-weighted and T2-weighted imaging,is of clinical value for identifying patients with T2 DM and cognitive impairment.Gray matter lesions and subcortical dilated perivascular spaces may be potential diagnostic markers of T2 DM that is complicated by cognitive impairment.This study was approved by the Medical Ethics Committee of University of South China(approval No.USC20131109003) on November 9,2013,and was retrospectively registered with the Chinese Clinical Trial Registry(registration No.Chi CTR1900024150) on June 27,2019.
基金supported by the Canada First Research Excellence Fund (CFREF)National Key R&D Program of China (2016YFA0202602).
文摘Lignocellulosic biomass photoreforming is a promising and alternative strategy for both sustainable H_(2) production and biomass valorization with infinite solar energy.However,harsh reaction conditions(high alkalinity or toxic organic solvents),with low biomass conversion and selectivity are often reported in literature.In this work,we report glucose photoreforming for coproduction of H_(2) and arabinose with improved selectivity under neutral condition using carbon quantum dots(CQDs)modified TiO_(2) composites.We show that the conventional CQDs fabricated by a facile one-step hydrothermal process could be endowed with novel color changing property,due to the particle aggregation under the regulation of incident light.The as-fabricated CQDs/TiO_(2) composites with certain colored CQDs could greatly improve glucose to arabinose conversion selectivity(-75%)together with efficient hydrogen evolution(up to 2.43 mmolh^(-1)g^(-1))in water.The arabinose is produced via the direct C1-C2 α-scissions mechanism with reactive oxygen species of·O_(2)^(-) and·OH,as evidenced by ^(13)C labeled glucose and the electron spin-resonance(ESR)studies,respectively.This work not only sheds new lights on CQDs assisted photobiorefinery for biomass valorization and H_(2) coproduction,but also opens the door for rationale design of different colored CQDs and their potential applications for solar energy utilization in the noble-metal-free system.
基金supported by the Ministry of Agriculture of China(2016ZX08009003-006)National Key R&D Program of China(2019YFA0110700)+1 种基金Science&Technology Department of Yunnan Province(2019HA003)Animal Branch of the Germplasm Bank of Wild Species,Chinese Academy of Sciences(Large Research Infrastructure Funding)。
文摘DEAR EDITOR,Genomic imprinting often results in parent-of-origin specific differential expression of maternally and paternally inherited alleles and plays an essential role in mammalian development and growth.Mammalian genomic imprinting has primarily been studied in mice and humans,with only limited information available for pigs.To systematically characterize this phenomenon and evaluate imprinting status between different species,we investigated imprinted genes on a genome-wide scale in pig brain tissues.
基金Supported by the Association Foundation Program of Yunnan Science and Technology Department and Kunming Medical University,No.2019FE001-103Yunnan Health Training Project of High Level Talents,No.D-2017053+2 种基金Top Young Experts Training Project for the Academy and Technology in Kunming and Yunnan Province,No.202005AC160066Postdoctoral Training Program of Yunnan Province,No.Ynbh19035Natural Science Foundation of Yunnan Province,No.2019-1-C-25318000002240.
文摘BACKGROUND Visceral leishmaniasis related-hemophagocytic lymphohistiocytosis(VL-HLH)is a hemophagocytic syndrome caused by Leishmania infection.VL-HLH is rare,especially in nonendemic areas where the disease is severe,and mortality rates are high.The key to diagnosing VL-HLH is to find the pathogen;therefore,the Leishmania must be accurately identified for timely clinical treatment.CASE SUMMARY We retrospectively analyzed the clinical data,laboratory examination results,and bone marrow cell morphology of two children with VL-HLH diagnosed via bone marrow cell morphology at Kunming Children’s Hospital of Yunnan,China.Both cases suspected of having malignant tumors at other hospitals and who were unresponsive to treatment were transferred to Kunming Children’s Hospital.They are Han Chinese girls,one was 2 years old and the other one is 9 mo old.They had repeated fevers,pancytopenia,hepatosplenomegaly,hypertriglyceridemia,and hypofibrinogenemia over a long period and met the HLH-2004 criteria.Their HLH genetic test results were negative.Both children underwent chemotherapy as per the HLH-2004 chemotherapy regimen,but it was ineffective and accompanied by serious infections.We found Leishmania amastigotes in their bone marrow via morphological examination of their bone marrow cells,which showed hemophagocytic cells;thus,the children were diagnosed with VL-HLH.After being transferred to a specialty hospital for treatment,the condition was well-controlled.CONCLUSION Morphological examination of bone marrow cells plays an important role in diagnosing VL-HLH.When clinically diagnosing secondary HLH,VL-HLH should be considered in addition to common pathogens,especially in patients for whom HLH-2004 chemotherapy regimens are ineffective.For infants and young children,bone marrow cytology examinations should be performed several times and as early as possible to find the pathogens to reduce potential misdiagnoses.
基金supported by the Canada First Research Excellence Fund(CFREF)。
文摘Biomass photorefinery to produce fuels and valuable chemicals is a promising approach to alleviating the energy crisis and achieving carbon neutrality.However,precisely modulating the photocatalytic conversion of biomass into value-added chemicals is still challenging.Here we demonstrate a feasible strategy to selectively produce arabinose via oriented glucose oxidation to gluconic acid,followed by the decarboxylation process for C1-C2 bond cleavage.To realize this process,gold nanoparticles(Au NPs)modified carbon nitride(AuCN)is rationally designed to regulate the electron transfer behavior of pristine carbon nitride from a two-electron pathway to a single-electron pathway.This allows selective production of superoxide(·O_(2)^(-))from oxygen reduction reaction which triggers glucose oxidation into gluconic acid.In addition,the arabinose production is synergistically promoted by the improved charge separation efficiency and extended visible-light absorption via localized surface plasmon resonance(LSPR)of Au nanoparticles.This work demonstrates an example of a mechanism-guided catalyst design to improve biofuels/chemicals production from biomass photorefinery.
基金supported by National Basic Research Program of China (973 Program) (No.2011CB707702)National Natural Science Foundation of China (No.81090272, No.81000632, and No.30900334)+1 种基金Shaanxi Provincial Natural Science Foundation Research Project (No.2009JQ8018)Fundamental Research Funds for the Central Universities
文摘In this contribution, we present an all-optical quantitative framework for bioluminescence tomography with non-contact measurement. The framework is comprised of four indispensable steps: extraction of the geometrical structures of the subject, light flux reconstruction on arbitrary surface, calibration and quantification of the surface light flux and internal bioluminescence reconstruction. In particular, the geometrical structures are retrieved using a completely optical method and captured under identical viewing conditions with the bioluminescent images. As a result, the proposed framework avoids the utilization of computed tomography or magnetic resonance imaging to provide the geometrical structures. On the basis of experimental measurements, we evaluate the performance of the proposed all-optical quantitative framework using a mouse shaped phantom. Preliminary result reveals the potential and feasibility of the proposed framework for bioluminescence tomography.
基金National Natural Science Foundation of China(Nos.22076068,8111310014)(China)Global Research Initiative for Sustainable Low-Carbon Unconventional Resources(Canada)University of Calgary’s Canada First Research Excellence Fund(CFREF)program(Canada).
文摘LnVO_(4)(Ln=La,Ce,Pr,Nd,etc.)is an emerging photocatalyst for solving the energy and environmental crisis,due to its suitable band gap,special valence electronic structure,high thermal,and chemical sta-bility,as well as excellent photocatalytic performance.Although exhibiting great promise,the low solar power employment efficiency of LnVO_(4) materials has limited its further development and application.However,recent breakthroughs have been made in both heightening its photocatalysis efficiency and elu-cidating the essential photocatalytic mechanisms.Therefore,it is important to review and summarize recent research progress on LnVO_(4) nanomaterials and their applications.In this review,we systemat-ically report on and examine recent computational and experimental advances in the modification of LnVO_(4)-based photocatalysts through morphology adjustment,elemental doping,phase structure modula-tion,crystal facet modulation,defect modulation,heterostructure,and beyond.Thereafter,we outline cur-rent promising photocatalytic applications and discuss challenges/expected upcoming research aims for LnVO_(4)-based photocatalysts.Our goal is to furnish guidance for the reasonable design and preparation of highly efficient LnVO_(4)(Ln=La,Ce,Pr,Nd,etc.)-based photocatalytic materials for sundry applications.
基金Project supported by the National Natural Science Foundation of China(21876062)Shandong Provincial Natural Science Foundation(ZR2022QB067)。
文摘Rational design of extractant structure to improve the extraction and separation capacity of rare earth elements(REEs)is a long-standing challenge.Herein,a new strategy was proposed to improve the stability of the chelating structure formed by malonamide and REEs.The stability of the chelating structure is greatly improved by using a double-ring framework structure which makes the two carbonyl groups of malonamide unable to rotate freely and both of them point to the metal ion position.Three benzyl groups were used to construct the hydrophobicity of the extractant and the organic shell of the extracted species.Tribenzylhexahydro-pyrrolo-pyridine-dione(THPPD)was designed and synthesized.The structure reduces the energy consumed by rotating carbonyl group in the coordination with metal ions and then improves the extraction ability of extractant.The crystal structure was preorganized as expected,with the two carbonyls pointing in a favorable coordination direction to the structural complement of the metal ion.The extraction behaviors of REEs with THPPD in a nitric acid medium were studied.Compared with N,N’-dibenzyl-N,N’-dimethylmalonamide(DBDM-MA)with a chain structure,the extraction capacity of THPPD is 360 times higher than that of DBDM-MA at 5.0 mol/L sodium nitrate.Furthermore,the binding energy and Gibbs free energy were investigated by density functional theory(DFT)in conjunction with the B3LYP.The theoretical results show that THPPD has more effective interaction with Pr(NO_(3))3 than DBDM-MA.The construction of chelating groups conformation is a worthy direction to improve the coordination ability and even selectivity of extractant.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.31970009,32170012 and 32000010)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,Grant No.2019QZKK0503)the Third Xinjiang Scientific Expedition and Research Program(STEP,Grant No.2021XJKK0505).
文摘Zygomycetes are phylogenetically early diverging,ecologically diverse,industrially valuable,agriculturally beneficial,and clinically pathogenic fungi.Although new phyla and subphyla have been constantly established to accommodate spe-cific members and a subkingdom Mucoromyceta,comprising Calcarisporiellomycota,Glomeromycota,Mortierellomycota and Mucoromycota,was erected to unite core zygomycetous fungi,phylogenetic relationships within phyla have not been well resolved.Taking account of the information of monophyly and divergence time estimated from ITS and LSU rDNA sequences,the present study updates the classification framework of the phylum Mucoromycota from the class down to the generic rank:three classes,three orders,20 families(including five new families Circinellaceae,Protomycocladaceae,Rhizomucoraceae,Syzygitaceae and Thermomucoraceae)and 64 genera.The taxonomic hierarchy was calibrated with estimated divergence times:phylum earlier than 617 Mya,classes and orders earlier than 547 Mya,families earlier than 199 Mya,and genera earlier than 12 Mya.Along with this outline,all genera of Mucoromycota are annotated and 58 new species are described.In addition,three new combinations are proposed.In this study,we update the taxonomic backbone of the phylum Mucoromycota and reinforce its phylogeny.We also contribute numerous new taxa and enrich the diversity of Mucoromycota.
基金This work is financially supported by the National Key R&D Program of China(grant nos.2016YFA0202602 and 2021YFE0115800)the National Natural Science Foundation of China(grant nos.U20A20122 and 52103285)+3 种基金the Program of Introducing Talents of Discipline to Universities-Plan 111 from the Ministry of Science and Technology and the Ministry of Education of China(grant no.B20002)the“Algae Factory”European Horizon 2020 Program financed by FEDER and Wallonia Region of Belgium(grant no.1610187)the“DepollutAir”of Interreg V France-Wallonie-Vlaanderen and the Natural Science Foundation of Hubei Province(grant nos.2018CFB242 and 2020CFB416)the Youth Innovation Research Fund Project of the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing.T.H.acknowledges support from the Royal Academy of Engineering through a Research Fellowship(Graphlex).We also thank Prof.Pierre Van Cutsem,Department of Biology,University of Namur for his advice.
文摘Electron donors are widely exploited in visible-light photocatalytic hydrogen production.As a typical electron donor pair and often the first choice for hydrogen production,the sodium sulfide-sodium sulfite pair has been extensively used.However,the resultant thiosulfate ions consume the photogenerated electrons to form an undesirable pseudocyclic electron transfer pathway during the photocatalytic process,strongly limiting the solar energy conversion efficiency.Here,we report novel and bioinspired electron donor pairs offering a noncyclic electron transfer pathway that provides more electrons without the consumption of the photogenerated electrons.Compared to the state-of-the-art electron donor pair Na_(2)S-Na_(2)SO_(3),these novel Na_(2)S-NaH_(2)PO_(2)and Na_(2)S-NaNO_(2)electron donor pairs enable an unprecedented enhancement of up to 370%and 140%for average photocatalytic H_(2)production over commercial CdS nanoparticles,and they are versatile for a large series of photocatalysts for visible-light water splitting.The discovery of these novel electron donor pairs can lead to a revolution in photocatalysis and is of great significance for industrial visible-light-driven H_(2)production.