The unique structure and complex deformation characteristics of concrete face rockfill dams(CFRDs)create safety monitoring challenges.This study developed an improved random forest(IRF)model for dam health monitoring ...The unique structure and complex deformation characteristics of concrete face rockfill dams(CFRDs)create safety monitoring challenges.This study developed an improved random forest(IRF)model for dam health monitoring modeling by replacing the decision tree in the random forest(RF)model with a novel M5'model tree algorithm.The factors affecting dam deformation were preliminarily selected using the statistical model,and the grey relational degree theory was utilized to reduce the dimensions of model input variables.Finally,a deformation prediction model of CFRDs was established using the IRF model.The ten-fold cross-validation method was used to quantitatively analyze the parameters affecting the IRF algorithm.The performance of the established model was verified using data from three specific measurement points on the Jishixia dam and compared with other dam deformation prediction models.At point ES-10,the performance evaluation indices of the IRF model were superior to those of the M5'model tree and RF models and the classical support vector regression(SVR)and back propagation(BP)neural network models,indicating the satisfactory performance of the IRF model.The IRF model also outperformed the SVR and BP models in settlement prediction at points ES2-8 and ES4-10,demonstrating its strong anti-interference and generalization capabilities.This study has developed a novel method for forecasting and analyzing dam settlements with practical significance.Moreover,the established IRF model can also provide guidance for modeling health monitoring of other structures.展开更多
Objective: Accurate detection and classification of breast lesions in early stage is crucial to timely formulate effective treatments for patients. We aim to develop a fully automatic system to detect and classify bre...Objective: Accurate detection and classification of breast lesions in early stage is crucial to timely formulate effective treatments for patients. We aim to develop a fully automatic system to detect and classify breast lesions using multiple contrast-enhanced mammography(CEM) images.Methods: In this study, a total of 1,903 females who underwent CEM examination from three hospitals were enrolled as the training set, internal testing set, pooled external testing set and prospective testing set. Here we developed a CEM-based multiprocess detection and classification system(MDCS) to perform the task of detection and classification of breast lesions. In this system, we introduced an innovative auxiliary feature fusion(AFF)algorithm that could intelligently incorporates multiple types of information from CEM images. The average freeresponse receiver operating characteristic score(AFROC-Score) was presented to validate system’s detection performance, and the performance of classification was evaluated by area under the receiver operating characteristic curve(AUC). Furthermore, we assessed the diagnostic value of MDCS through visual analysis of disputed cases,comparing its performance and efficiency with that of radiologists and exploring whether it could augment radiologists’ performance.Results: On the pooled external and prospective testing sets, MDCS always maintained a high standalone performance, with AFROC-Scores of 0.953 and 0.963 for detection task, and AUCs for classification were 0.909[95% confidence interval(95% CI): 0.822-0.996] and 0.912(95% CI: 0.840-0.985), respectively. It also achieved higher sensitivity than all senior radiologists and higher specificity than all junior radiologists on pooled external and prospective testing sets. Moreover, MDCS performed superior diagnostic efficiency with an average reading time of 5 seconds, compared to the radiologists’ average reading time of 3.2 min. The average performance of all radiologists was also improved to varying degrees with MDCS assistance.Conclusions: MDCS demonstrated excellent performance in the detection and classification of breast lesions,and greatly enhanced the overall performance of radiologists.展开更多
The shortage of computation methods and storage devices has largely limited the development of multiobjective optimization in industrial processes.To improve the operational levels of the process industries,we propose...The shortage of computation methods and storage devices has largely limited the development of multiobjective optimization in industrial processes.To improve the operational levels of the process industries,we propose a multi-objective optimization framework based on cloud services and a cloud distribution system.Real-time data from manufacturing procedures are first temporarily stored in a local database,and then transferred to the relational database in the cloud.Next,a distribution system with elastic compute power is set up for the optimization framework.Finally,a multi-objective optimization model based on deep learning and an evolutionary algorithm is proposed to optimize several conflicting goals of the blast furnace ironmaking process.With the application of this optimization service in a cloud factory,iron production was found to increase by 83.91 t∙d^(-1),the coke ratio decreased 13.50 kg∙t^(-1),and the silicon content decreased by an average of 0.047%.展开更多
The eggplant (Solanummelongena L.) is widely cultivated across the world.Technology regarding the in vitro germination and preservation of eggplant pollen is important for the production of hybrid seeds.In this work,t...The eggplant (Solanummelongena L.) is widely cultivated across the world.Technology regarding the in vitro germination and preservation of eggplant pollen is important for the production of hybrid seeds.In this work,the suitable cultural medium and time for the germination of fresh and dried pollen was investigated.The results showed that a suitable medium for eggplant pollen germination was 0.5% agar+5% sucrose+0.01% boric acid+0.01% GA3,the suitable culture time was 2 h for fresh pollen and 4 h for dried pollen stored at low temperature.GA3 could induce the germination of dried and stored pollen. The better way to dry anthers was 4 h in a desiccator at 25~30℃.We also found that pollen from the second to the fourth branch has the highest germination rate. Furthermore,there were no significant differences in the seed setting rates among the different storage temperatures and storage times,whereas the number of viable seeds formed per fruit differed significantly,which was 87.3% more for pollen stored at -80℃ and fresh pollen than that stored at 4℃.This work optimized pollen storage conditions and is helpful to eggplant hybrid seed production.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51979224)the China National Funds for Distinguished Young Scientists(Grant No.52125904).
文摘The unique structure and complex deformation characteristics of concrete face rockfill dams(CFRDs)create safety monitoring challenges.This study developed an improved random forest(IRF)model for dam health monitoring modeling by replacing the decision tree in the random forest(RF)model with a novel M5'model tree algorithm.The factors affecting dam deformation were preliminarily selected using the statistical model,and the grey relational degree theory was utilized to reduce the dimensions of model input variables.Finally,a deformation prediction model of CFRDs was established using the IRF model.The ten-fold cross-validation method was used to quantitatively analyze the parameters affecting the IRF algorithm.The performance of the established model was verified using data from three specific measurement points on the Jishixia dam and compared with other dam deformation prediction models.At point ES-10,the performance evaluation indices of the IRF model were superior to those of the M5'model tree and RF models and the classical support vector regression(SVR)and back propagation(BP)neural network models,indicating the satisfactory performance of the IRF model.The IRF model also outperformed the SVR and BP models in settlement prediction at points ES2-8 and ES4-10,demonstrating its strong anti-interference and generalization capabilities.This study has developed a novel method for forecasting and analyzing dam settlements with practical significance.Moreover,the established IRF model can also provide guidance for modeling health monitoring of other structures.
基金supported by the National Natural Science Foundation of China (No.82001775, 82371933)the Natural Science Foundation of Shandong Province of China (No.ZR2021MH120)+1 种基金the Special Fund for Breast Disease Research of Shandong Medical Association (No.YXH2021ZX055)the Taishan Scholar Foundation of Shandong Province of China (No.tsgn202211378)。
文摘Objective: Accurate detection and classification of breast lesions in early stage is crucial to timely formulate effective treatments for patients. We aim to develop a fully automatic system to detect and classify breast lesions using multiple contrast-enhanced mammography(CEM) images.Methods: In this study, a total of 1,903 females who underwent CEM examination from three hospitals were enrolled as the training set, internal testing set, pooled external testing set and prospective testing set. Here we developed a CEM-based multiprocess detection and classification system(MDCS) to perform the task of detection and classification of breast lesions. In this system, we introduced an innovative auxiliary feature fusion(AFF)algorithm that could intelligently incorporates multiple types of information from CEM images. The average freeresponse receiver operating characteristic score(AFROC-Score) was presented to validate system’s detection performance, and the performance of classification was evaluated by area under the receiver operating characteristic curve(AUC). Furthermore, we assessed the diagnostic value of MDCS through visual analysis of disputed cases,comparing its performance and efficiency with that of radiologists and exploring whether it could augment radiologists’ performance.Results: On the pooled external and prospective testing sets, MDCS always maintained a high standalone performance, with AFROC-Scores of 0.953 and 0.963 for detection task, and AUCs for classification were 0.909[95% confidence interval(95% CI): 0.822-0.996] and 0.912(95% CI: 0.840-0.985), respectively. It also achieved higher sensitivity than all senior radiologists and higher specificity than all junior radiologists on pooled external and prospective testing sets. Moreover, MDCS performed superior diagnostic efficiency with an average reading time of 5 seconds, compared to the radiologists’ average reading time of 3.2 min. The average performance of all radiologists was also improved to varying degrees with MDCS assistance.Conclusions: MDCS demonstrated excellent performance in the detection and classification of breast lesions,and greatly enhanced the overall performance of radiologists.
基金This work was supported in part by the National Natural Science Foundation of China(61933015).
文摘The shortage of computation methods and storage devices has largely limited the development of multiobjective optimization in industrial processes.To improve the operational levels of the process industries,we propose a multi-objective optimization framework based on cloud services and a cloud distribution system.Real-time data from manufacturing procedures are first temporarily stored in a local database,and then transferred to the relational database in the cloud.Next,a distribution system with elastic compute power is set up for the optimization framework.Finally,a multi-objective optimization model based on deep learning and an evolutionary algorithm is proposed to optimize several conflicting goals of the blast furnace ironmaking process.With the application of this optimization service in a cloud factory,iron production was found to increase by 83.91 t∙d^(-1),the coke ratio decreased 13.50 kg∙t^(-1),and the silicon content decreased by an average of 0.047%.
文摘The eggplant (Solanummelongena L.) is widely cultivated across the world.Technology regarding the in vitro germination and preservation of eggplant pollen is important for the production of hybrid seeds.In this work,the suitable cultural medium and time for the germination of fresh and dried pollen was investigated.The results showed that a suitable medium for eggplant pollen germination was 0.5% agar+5% sucrose+0.01% boric acid+0.01% GA3,the suitable culture time was 2 h for fresh pollen and 4 h for dried pollen stored at low temperature.GA3 could induce the germination of dried and stored pollen. The better way to dry anthers was 4 h in a desiccator at 25~30℃.We also found that pollen from the second to the fourth branch has the highest germination rate. Furthermore,there were no significant differences in the seed setting rates among the different storage temperatures and storage times,whereas the number of viable seeds formed per fruit differed significantly,which was 87.3% more for pollen stored at -80℃ and fresh pollen than that stored at 4℃.This work optimized pollen storage conditions and is helpful to eggplant hybrid seed production.