期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A survey on causal inference for recommendation 被引量:1
1
作者 Huishi Luo Fuzhen zhuang +4 位作者 Ruobing Xie hengshu zhu Deqing Wang zhulin An Yongjun Xu 《The Innovation》 EI 2024年第2期130-144,共15页
Causal inference has recently garnered significant interest among recommender system(RS)researchers due to its ability to dissect cause-and-effect relationships and its broad applicability across multiple fields.It of... Causal inference has recently garnered significant interest among recommender system(RS)researchers due to its ability to dissect cause-and-effect relationships and its broad applicability across multiple fields.It offers a framework to model the causality in RSs such as confounding effects and deal with counterfactual problems such as offline policy evaluation and data augmentation.Although there are already some valuable surveys on causal recommendations,they typically classify approaches based on the practical issues faced in RS,a classification that may disperse and fragment the uni-fied causal theories.Considering RS researchers’unfamiliarity with causality,it is necessary yet challenging to comprehensively review relevant studies from a coherent causal theoretical perspective,thereby facilitating a deeper integration of causal inference in RS.This survey provides a systematic review of up-to-date papers in this area from a causal theory standpoint and traces the evolutionary development of RS methods within the same causal strategy.First,we introduce the fundamental concepts of causal inference as the basis of the following review.Subsequently,we propose a novel theory-driven taxonomy,categorizing existing methods based on the causal theory employed,namely those based on the potential outcome framework,the structural causal model,and general counterfactuals.The review then delves into the technical details of how existing methods apply causal inference to address particular recommender issues.Finally,we highlight some promising directions for future research in this field.Representative papers and open-source resources will be progressively available at https://github.com/Chrissie-Law/Causal-Inference-forRecommendation. 展开更多
关键词 SURVEY DETAILS CAUSAL
原文传递
Exploring the tidal effect of urban business district with large-scale human mobility data 被引量:2
2
作者 Hongting NIU Ying SUN +4 位作者 hengshu zhu Cong GENG Jiuchun YANG Hui XIONG Bo LANG 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第3期77-90,共14页
Business districts are urban areas that have various functions for gathering people,such as work,consumption,leisure and entertainment.Due to the dynamic nature of business activities,there exists significant tidal ef... Business districts are urban areas that have various functions for gathering people,such as work,consumption,leisure and entertainment.Due to the dynamic nature of business activities,there exists significant tidal effect on the boundary and functionality of business districts.Indeed,effectively analyzing the tidal patterns of business districts can benefit the economic and social development of a city.However,with the implicit and complex nature of business district evolution,it is non-trivial for existing works to support the fine-grained and timely analysis on the tidal effect of business districts.To this end,we propose a data-driven and multi-dimensional framework for dynamic business district analysis.Specifically,we use the large-scale human trajectory data in urban areas to dynamically detect and forecast the boundary changes of business districts in different time periods.Then,we detect and forecast the functional changes in business districts.Experimental results on real-world trajectory data clearly demonstrate the effectiveness of our framework on detecting and predicting the boundary and functionality change of business districts.Moreover,the analysis on practical business districts shows that our method can discover meaningful patterns and provide interesting insights into the dynamics of business districts.For example,the major functions of business districts will significantly change in different time periods in a day and the rate and magnitude of boundaries varies with the functional distribution of business districts. 展开更多
关键词 business district TRAJECTORY functionality detection tidal effect boundary detection visiting score
原文传递
基于知识图谱的推荐系统研究综述 被引量:114
3
作者 秦川 祝恒书 +6 位作者 庄福振 郭庆宇 张琦 张乐 王超 陈恩红 熊辉 《中国科学:信息科学》 CSCD 北大核心 2020年第7期937-956,共20页
推荐系统旨在为用户推荐个性化的在线商品或信息,其广泛应用于众多Web场景之中,来处理海量信息数据所导致的信息过载问题,以此提升用户体验.鉴于推荐系统强大的实用性,自20世纪90年代中期以来,研究者针对其方法与应用两方面,进行了大量... 推荐系统旨在为用户推荐个性化的在线商品或信息,其广泛应用于众多Web场景之中,来处理海量信息数据所导致的信息过载问题,以此提升用户体验.鉴于推荐系统强大的实用性,自20世纪90年代中期以来,研究者针对其方法与应用两方面,进行了大量广泛的研究.近年来,很多工作发现知识图谱中所蕴含的丰富信息可以有效地解决推荐系统中存在的一系列关键问题,例如数据稀疏、冷启动、推荐多样性等.因此,本文针对基于知识图谱的推荐系统这一领域进行了全面的综述.具体地,首先简单介绍推荐系统与知识图谱中的一些基本概念.随后,详细介绍现有方法如何挖掘知识图谱不同种类的信息并应用于推荐系统.此外,总结了相关的一系列推荐应用场景.最后,提出了对基于知识图谱的推荐系统前景的看法,并展望了该领域未来的研究方向. 展开更多
关键词 知识图谱 推荐系统 协同过滤 异质信息网络 图嵌入
原文传递
EL-Picker:基于集成学习的余震P波初动实时拾取方法
4
作者 申大忠 张琦 +7 位作者 徐童 祝恒书 赵雯佳 殷子凯 周培伦 房立华 陈恩红 熊辉 《中国科学:信息科学》 CSCD 北大核心 2021年第6期912-926,共15页
在实时地震监测中,地震P波(primary wave)的初动拾取任务具有至关重要的作用,其有助于地震应急响应的及时实施.虽然此前在该领域已开展了大量的研究,但是如何从地震分布密集并且充满噪声的监测波形中有效地识别出P波仍然是一个具有挑战... 在实时地震监测中,地震P波(primary wave)的初动拾取任务具有至关重要的作用,其有助于地震应急响应的及时实施.虽然此前在该领域已开展了大量的研究,但是如何从地震分布密集并且充满噪声的监测波形中有效地识别出P波仍然是一个具有挑战性的任务.例如对于大地震的余震监测,实践中使用的普遍方法仍依赖于专家辅助标注.本文针对地震实时监测任务,基于集成学习策略,提出一个全新的技术框架——EL-Picker,实现从连续地震波形中自主拾取P波的初动到时.具体而言,EL-Picker包含3个模块,即触发器、分类器和精化器.其中,分类器模块借鉴集成学习策略,实现对多个个体学习器的整合,提升整体模型性能.基于汶川Ms8.0地震的余震数据集进行的大量实验,我们发现EL-Picker不仅较好地实现P波初动拾取效果,并且多诊断出120%被人工遗漏的地震P波.同时,实验结果也启发我们探索如何针对不同的地震站台选取个性化的个体学习器构建分类器模块.此外,我们进一步地讨论了被人工遗漏的地震波形的规律特点,用于指导人工地震标注.这些发现清晰地验证了EL-Picker框架的鲁棒性、时效性、灵活性以及稳定性. 展开更多
关键词 P波拾取 机器学习 集成学习 汶川余震 实时地震监测
原文传递
Learning to detect subway arrivals for passengers on a train 被引量:1
5
作者 Kuifei YU hengshu zhu +4 位作者 Huanhuan CAO Baoxian ZHANG Enhong CHEN Jilei TIAN Jinghai RAO 《Frontiers of Computer Science》 SCIE EI CSCD 2014年第2期316-329,共14页
The use of traditional positioning technologies, such as GPS and wireless local positioning, rely on un- derlying infrastructure. However, in a subway environment, such positioning systems are not available for the po... The use of traditional positioning technologies, such as GPS and wireless local positioning, rely on un- derlying infrastructure. However, in a subway environment, such positioning systems are not available for the position- ing tasks, such as the detection of the train arrivals for the passengers in the train. An alternative approach is to exploit the contextual information available in the mobile devices of subway riders to detect train arrivals. To this end, we pro- pose to exploit multiple contextual features extracted from the mobile devices of subway riders to precisely detecting train arrivals. Following this line, we first investigate poten- tial contextual features which may be effective to detect train arrivals according to the observations from 3D accelerome- ters and GSM radio. Furthermore, we propose to explore the maximum entropy (MaxEnt) model for training a train ar- rival detector by learning the correlation between contextual features and train arrivals. Finally, we perform extensive ex- periments on several real-world data sets collected from two major subway lines in the Beijing subway system. Experi- mental results validate both the effectiveness and efficiency of the proposed approach. 展开更多
关键词 subway arrival detection mobile users smartcities information storage and retrieval EXPERIMENTATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部