Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the ...Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the exceedingly high negative-to-positive capacity ratios(N/P ratios)which severely encumber energy density and hinder their practical application.Herein,a novel nucleophilic Na_(3)P interphase on aluminum foil has been designed to significantly lower the nucleation energy barrier for sodium atom deposition,resulting in a remarkable reduction of nucleation overpotential and efficient mitigation of dendritic growth at high sodium deposition of 5 mA h cm^(−2).The interphase promotes stable cycling in anode-less SMB configurations with a low N/P ratio of 1.4 and high cathode mass loading of 11.5 mg cm^(−2),and demonstrates a substantial increase in high capacity retention of 92.4%after 500 cycles even under 1 C rate condition.This innovation signifies a promising leap forward in the development of high-energy-density,anode-less SMBs,offering a potential solution to the longstanding issues of cycle stability and energy efficiency.展开更多
NS codoped carbon nanorods(NS-CNRs) were prepared using crab shell as template and polyphenylene sulfide(PPS) as both the C and S precursor, followed by carbonization in NH_3. The as-obtained NS-CNRs had a diamete...NS codoped carbon nanorods(NS-CNRs) were prepared using crab shell as template and polyphenylene sulfide(PPS) as both the C and S precursor, followed by carbonization in NH_3. The as-obtained NS-CNRs had a diameter of ~50 nm, length of several micrometers, and N and S contents of 12.5 at.% and 3.7 at.%,respectively, which can serve as anodes for both lithium-ion batteries(LIBs) and sodium ion batteries(SIBs). When serving as an anode of LIB, the NS-CNRs delivered gravimetric capacities of 2154 mAh g^(-1)at current densities of 0.1 A g^(-1)and 625 mAh g^(-1)at current densities of 5.0 A g^(-1)for 1000 cycles.When serving as an anode of SIB, the NS-CNRs delivered gravimetric capacities of 303 mAh g^(-1)at current densities of 0.1 A g^(-1)and 230 mAh g^(-1)at current densities of 1.0 A g^(-1)for 3000 cycles. The excellent electrochemical performance of NS-CNRs could be ascribed to the one-dimensional nanometer structure and high level of heteroatom doping. We expect that the obtained NS-CNRs would benefit for the future development of the doped carbon materials for lithium ion batteries and other extended applications such as supercapacitor, catalyst and hydrogen storage.展开更多
Lithium-sulfur(Li-S)batteries have become prospective candidates for next-generation energy storage owing to the high energy density and low cost.However,the sluggish kinetics of the electrochemical reaction and shutt...Lithium-sulfur(Li-S)batteries have become prospective candidates for next-generation energy storage owing to the high energy density and low cost.However,the sluggish kinetics of the electrochemical reaction and shuttle effect result in a rapid capacity decay.Herein,a titanium nitride nanocrystal/Ndoped graphene(TiN@NG)composite is developed to host elemental sulfur.The TiN nanoparticles decorated on graphene sheets attract Li polysulfides(LiPSx)and catalyze the electrochemical reduction and oxidation of LiPSx in the discharge and charge processes,respectively.These two effects effectively restrain the dissolution of the LiPSx and accelerate the electrochemical reactions,thereby,alleviating the shuttle effect.As a result,the cathode composed of TiN@NG/S delivers a remarkable reversible capacity(1390 mA h g^(-1) at 0.1 C)and excellent cycling performance(730 mA h g^(-1) after 300 cycles).We believe that this work can bring some inspiration for designing high-performance Li-S batteries.展开更多
Al-S batteries are promising next generation energy storage devices due to their high theoretical energy density(1340 Wh kg^(-1)),low cost,and safe operation.However,the electrochemical performance of Al-S batteries s...Al-S batteries are promising next generation energy storage devices due to their high theoretical energy density(1340 Wh kg^(-1)),low cost,and safe operation.However,the electrochemical performance of Al-S batteries suffers poor reversibility owing to slow kinetic processes determined by the difficulty of reversible conversion between Al and S.Here,we proposed a single-atom catalysts comprising Co atoms embedded in a nitrogen-doped graphene(Co NG)as an electrochemical catalyst in the sulfur cathode that renders a reduced discharge-charge voltage hysteresis and improved sulfur utilization in the cathode.The structural and electrochemical analyses suggest that the Co NG facilitated both the formation and oxidation of Al S;during the electrochemical reactions of the sulfur species.Consequently,the Co NG-S composite can deliver a considerably reduced voltage hysteresis of 0.76 V and a reversible specific capacity of 1631 m Ah g^(-1) at 0.2 A g^(-1) with a sulfur utilization of more than 97%.展开更多
Sulfur redox reactions render lithium–sulfur(Li–S)batteries with an energy density of>500Whkg−1 but suffer a low practical capacity and fast capacity fade due to sluggish sulfur redox reaction(SRR)kinetics,which ...Sulfur redox reactions render lithium–sulfur(Li–S)batteries with an energy density of>500Whkg−1 but suffer a low practical capacity and fast capacity fade due to sluggish sulfur redox reaction(SRR)kinetics,which lies in the complex reaction process that involves a series of reaction intermediates and proceeds via a cascade reaction.Here,we present a Pt–Cu dual-atom catalyst(Pt/Cu-NG)as an electrocatalyst for sulfur redox reactions.Pt/Cu-NG enabled the rapid conversion of soluble polysulfide intermediates into insoluble Li2S2/Li2S,and consequently,it prevented the accumulation and shuttling of lithium polysulfides,thus outperforming the corresponding single-atom catalysts(SACs)with individual Pt or Cu sites.Operando X-ray absorption spectroscopy and density functional theory calculations revealed that a synergistic effect between the paired Pt and Cu atoms modifies the electronic structure of the Pt site through d-orbital interactions,resulting in an optimal moderate interaction of the metal atom with the different sulfide species.This optimal interaction enhanced charge transfer kinetics and promoted sulfur redox reactions.Our work thus provides important insights on the atomic scale into the synergistic effects operative in dual-atom catalysts and will thus pave the way to electrocatalysts with enhanced efficiency for high-performance Li–S batteries.展开更多
Li metal has become a strong candidate for anode due to its high theoretical specific capacity and lowest electrochemical potential.However,the poor reversibility caused by continuous chemical and electrochemical degr...Li metal has become a strong candidate for anode due to its high theoretical specific capacity and lowest electrochemical potential.However,the poor reversibility caused by continuous chemical and electrochemical degradation hinders the practical application of Li metal.Solid-solution-based metal alloy phases have been proposed as hosts for regulating the non-dendrite electrodeposition,but the fundamental understanding remains unclear due to the drastically different deposition behaviors of Li on them.Here we found the difference in the diffusion coefficient of Li atoms on solid-solution-based metal alloy phases(Li-Mg and Li-Ag alloys)was a major contributor to the different deposition behaviors.The low Li atom diffusion coefficient of Li-Mg alloy showed a preferential Li accumulation on the upper surface rather than the inward-growth plating of Li atoms into alloy foil in Li-Ag alloy.By the process of secondary recrystallization,we improved the diffusion coefficient of Li atoms in Li-Mg alloy that facilitates the inward transfer rather than surface plating of Li atoms.In this case,the recrystallized Li-Mg alloy underwent a solidsolution phase change in the delithiation-lithiation cycles which yielded a high Coulombic efficiency of 99.3%with a reversible gravimetric capacity of 2,874 mAh·g−1 and superior cycling stability over 5,000 h without dendrite growth.展开更多
The undesirable shuttle effect and sluggish redox kinetics of polysulfides seriously result in low sulfur utilization and poor capacity retention.Here,an integrated strategy is proposed by rational designing multifunc...The undesirable shuttle effect and sluggish redox kinetics of polysulfides seriously result in low sulfur utilization and poor capacity retention.Here,an integrated strategy is proposed by rational designing multifunctional architecture to manipulate the redox kinetics of polysulfides,specifically,by employing iron atoms(Fe-As)and iron-species nanoparticles(Fe-NPs)co-embedded nitrogen-doped carbon nanotube(Fe-NCNT)as catalyst and host for sulfur.The synergistic cooperation of Fe-As and Fe-NPs provides efficient active sites to facilitate the diffusion,strengthen the affinities,and promote the conversion reactions for polysulfides.Furthermore,the NCNT not only offers practical Li+transport pathways but also immobilize the polysulfides effectively.Benefiting from these merits,the Fe-NCNT/S electrodes exhibit high initial specific capacity of 1502.6 mAh/g at 0.1 C,outstanding rate performance(830 mAh/g at 2 C),and good cycling performance(597.8 mAh/g after 500 cycles with an ultralow capacity fading rate of 0.069%per cycle).This work features the distinct interaction of iron atom-nanoparticles on facilitating immobilization-diffusion-transformation process of polysulfides,and it also expected to pave the way for the application in practical Li-S batteries.展开更多
Single atom catalysts(SACs)with atomically dispersed transition metals on nitrogen-doped carbon supports have recently emerged as highly active non-noble metal electrocatalysts for oxygen reduction reaction(ORR)and ox...Single atom catalysts(SACs)with atomically dispersed transition metals on nitrogen-doped carbon supports have recently emerged as highly active non-noble metal electrocatalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),showing great application potential in Zn-air batteries.However,because of the complex structure-performance relationships of carbon-based SACs in the oxygen electrocatalytic reactions,the contribution of different metal atoms to the catalytic activity of SACs in Zn-air batteries still remains ambiguous.In this study,SACs with atomically dispersed transition metals on nitrogen-doped graphene sheets(M-N@Gs,M=Co,Fe and Ni),featured with similar physicochemical properties and M-N@C configurations,are obtained.By comparing the on-set potentials and the maximum current,we observed that the ORR activity is in the order of Co-N@G>Fe-N@G>Ni-N@G,while the OER activity is in the order of Co-N@G>Ni-N@G>Fe-N@G.The Zn-air batteries with Co-N@G as the air cathode catalysts outperform those with the Fe-N@G and Ni-N@G.This is due to the accelerated charge transfer between Co-N@C active sites and the oxygen-containing reactants.This study could improve our understanding of the design of more efficient bifunctional electrocatalysts for Zn-air batteries at the atomic level.展开更多
Because of its high theoretical specific capacity and low reduction potential,Li metal is considered to be key to reaching high energy density in rechargeable batteries.In this context,most of the research has focused...Because of its high theoretical specific capacity and low reduction potential,Li metal is considered to be key to reaching high energy density in rechargeable batteries.In this context,most of the research has focused on suppressing dendrite formation during Li deposition to improve the cycling reversibility and safety of the batteries.Here,covalent organic framework(COF)film coating on a commercial polypropylene separator is applied as an ion redistributor to eliminate Li dendrites.The COF crystallites consist of ordered nanochannels that hinder the movement of anions while allowing Li-ions to transport across,leading to a high Li-ion transference number of 0.77±0.01.The transport of Li-ions across the COF film can be considered to be analogous to beads passing through a Galton Board,a model that demonstrates a statistical concept of a normal distribution.Thus,an even distribution of Li-ions is obtained at the COF/Li metal interface.The controlled Li-ion flux yields a smooth Li metal surface after 1,000 h(500 times)of cycling,leading to a significantly improved cycling stability and reversibility,as demonstrated by Cu||Li half cells,Li||Li symmetric cells,and Li Fe PO4||Li full cells.These results suggest that,following the principle of a Galton Board,nanopore insulators such as COF-based materials are effective ion distributors for the different energy storage or conversion systems.展开更多
Electrical double-layer capacitors are widely concerned for their high power density,long cycling life and high cycling efficiency.However,their wide application is limited by their low energy density.In this study,we...Electrical double-layer capacitors are widely concerned for their high power density,long cycling life and high cycling efficiency.However,their wide application is limited by their low energy density.In this study,we propose a simple yet environmental friendly method to synthesize cobalt and nitrogen atoms co-doped porous carbon(CoAT-NC) material.Cobalt atoms connected with primarily pyridinic nitrogen atoms can be uniformly dispersed in the amorphous carbon matrix,which is benefit for improving electrical conductivity and density of states of the carbon material.Therefore,an enhanced perfo rmance is expected when CoAT-NC is served as electrode in a supercapacitor device.CoAT-NC displays a good gravimetric capacitance of 160 F/g at 0.5 A/g combing with outstanding capacitance retention of 90% at an extremely high current density of 100 A/g in acid electrolyte.Furthermore,a good energy density of 30 Wh/kg can be obtained in the organic electrolyte.展开更多
Stable solid electrolyte interphase(SEI)has been well established to be critical for the reversible operation of Li(ion)batteries,yet our understanding of its mechanical properties currently remains incomplete.Here,we...Stable solid electrolyte interphase(SEI)has been well established to be critical for the reversible operation of Li(ion)batteries,yet our understanding of its mechanical properties currently remains incomplete.Here,we used an electrochemical quartz crystal microbalance combined with dissipation monitoring(EQCM-D)to investigate SEI formation.By quantitatively estimating in-situ,the change in mass,shear modulus,and viscosity of the SEI,we show that the SEI formation in propylene carbonate(PC)-and ethylene carbonate/diethyl carbonate(EC/DEC)-based electrolytes involves the growth of a rigid laye r followed by a viscoelastic layer,whereas a distinct"one-layer"rigid model is applicable to the SEI formulated in tetraethylene glycol dimethyl ether(TEGDME)-based electrolyte.With the continuous formation of the SEI,its shear modulus decreases accompanied by an increase in viscosity.In TEGDME,the lightest/thinnest SEI(mass lower than in PC by a factor of nine)yet having the greatest stiffness(more than five times that in PC)is obtained.We attribute this behavior to differences in the chemical composition of the SEIs,which have been revealed by tracking the mass-change-per-mole-of-electrontransferred using EQCM-D and further confirmed by X-ray photoelectron spectroscopy.展开更多
During operation of a lithium metal battery,uneven lithium deposition often results in the growth of lithium dendrites and causes a rapid decay in battery performance and even leads to safety issues.This is still the ...During operation of a lithium metal battery,uneven lithium deposition often results in the growth of lithium dendrites and causes a rapid decay in battery performance and even leads to safety issues.This is still the main hurdle hindering the practical application of lithium metal anodes.We report a new type of Janus separator fabricated by introducing a molecular sieve coating on the surface of the polypropylene separator that serves as a redistribution layer for lithium ions.Our results show that using this layer,the growth of lithium dendrites can be largely inhibited and the battery performance greatly improved.In a typical Li||Cu half-cell with the Janus separator,the Coulombic efficiency of the lithium metal anode can be maintained at>98.5%for over 500 cycles.The cycling life span is also extended by a factor of 8 in the Li||Li symmetric cell.Furthermore,the high-strength coating improves the mechanical properties of the separator,thus enhancing safety.The effectiveness of our strategy is demonstrated by both the inhibited growth of lithium dendrites and the improved battery performance.Our methodology could eventually be generalized for electrode protection in other battery systems.展开更多
Portable electrical power sources play increasingly vital roles in our daily lives due to the widespread use of mobile electronic devices and electrical vehicles.Electrochemical capacitors,also referred as supercapaci...Portable electrical power sources play increasingly vital roles in our daily lives due to the widespread use of mobile electronic devices and electrical vehicles.Electrochemical capacitors,also referred as supercapacitors(SCs)or ultracapacitors,are an important type of energy storage system with superior advantages of rapid power delivery and recharging compared to other types of energy storage systems.In practice,SCs have played im-展开更多
Graphene sponge(GS) with microscale size, high mechanical elasticity and electrical conductivity has attracted great interest as a sensing material for piezoresistive pressure sensor. However, GS offering a lower limi...Graphene sponge(GS) with microscale size, high mechanical elasticity and electrical conductivity has attracted great interest as a sensing material for piezoresistive pressure sensor. However, GS offering a lower limit of pressure detection with high gauge factor, which is closely dependent on the mechanical and electrical properties and determined by the fabrication process, is still demanded. Here, γ-ray irradiation reduced GS is reported to possess a gauge factor of 1.03 kPa^–1 with pressure detection limit of 10 Pa and high stress retention of 76% after 800 cycles of compressing/relaxation at strain of 50%. Compared with the carbon nanotube(CNT) reinforced GS, the improved lower limit of pressure detection and gauge factor of the GS prepared by γ-ray irradiation is due to the low compression stress(0.9 kPa at stain of 50%). These excellent physical properties of the GS are ascribed to the mild,residual free, and controllable reduction process offered by γ-ray irradiation.展开更多
基金funding support from the National Natural Science Foundation of China (22125902, 22109150, 22279126, U2032202, and 21975243)the DNL cooperation Fund, CAS (DNL202020)+1 种基金the National Key R&D Program of China (no. 2022YFA1504101)the Anhui Provincial Natural Science Foundation (2108085QB65)
文摘Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the exceedingly high negative-to-positive capacity ratios(N/P ratios)which severely encumber energy density and hinder their practical application.Herein,a novel nucleophilic Na_(3)P interphase on aluminum foil has been designed to significantly lower the nucleation energy barrier for sodium atom deposition,resulting in a remarkable reduction of nucleation overpotential and efficient mitigation of dendritic growth at high sodium deposition of 5 mA h cm^(−2).The interphase promotes stable cycling in anode-less SMB configurations with a low N/P ratio of 1.4 and high cathode mass loading of 11.5 mg cm^(−2),and demonstrates a substantial increase in high capacity retention of 92.4%after 500 cycles even under 1 C rate condition.This innovation signifies a promising leap forward in the development of high-energy-density,anode-less SMBs,offering a potential solution to the longstanding issues of cycle stability and energy efficiency.
基金the National Key Basic Research Program of China (2015CB351903)the National Natural Science Foundation of China (51402282, 51373160,21474095, 21476104, 21373197)+1 种基金the Fundamental Research Funds for the Central Universities (WK3430000003)the 100 Talents Program of the Chinese Academy of Sciences
文摘NS codoped carbon nanorods(NS-CNRs) were prepared using crab shell as template and polyphenylene sulfide(PPS) as both the C and S precursor, followed by carbonization in NH_3. The as-obtained NS-CNRs had a diameter of ~50 nm, length of several micrometers, and N and S contents of 12.5 at.% and 3.7 at.%,respectively, which can serve as anodes for both lithium-ion batteries(LIBs) and sodium ion batteries(SIBs). When serving as an anode of LIB, the NS-CNRs delivered gravimetric capacities of 2154 mAh g^(-1)at current densities of 0.1 A g^(-1)and 625 mAh g^(-1)at current densities of 5.0 A g^(-1)for 1000 cycles.When serving as an anode of SIB, the NS-CNRs delivered gravimetric capacities of 303 mAh g^(-1)at current densities of 0.1 A g^(-1)and 230 mAh g^(-1)at current densities of 1.0 A g^(-1)for 3000 cycles. The excellent electrochemical performance of NS-CNRs could be ascribed to the one-dimensional nanometer structure and high level of heteroatom doping. We expect that the obtained NS-CNRs would benefit for the future development of the doped carbon materials for lithium ion batteries and other extended applications such as supercapacitor, catalyst and hydrogen storage.
基金funding support from the National Natural Science Foundation of China(51761145046,21975243,and 51672262)support from the 100 Talents Program of the Chinese Academy of Sciences+1 种基金National Program for Support of Top-notch Young ProfessionaliChEM。
文摘Lithium-sulfur(Li-S)batteries have become prospective candidates for next-generation energy storage owing to the high energy density and low cost.However,the sluggish kinetics of the electrochemical reaction and shuttle effect result in a rapid capacity decay.Herein,a titanium nitride nanocrystal/Ndoped graphene(TiN@NG)composite is developed to host elemental sulfur.The TiN nanoparticles decorated on graphene sheets attract Li polysulfides(LiPSx)and catalyze the electrochemical reduction and oxidation of LiPSx in the discharge and charge processes,respectively.These two effects effectively restrain the dissolution of the LiPSx and accelerate the electrochemical reactions,thereby,alleviating the shuttle effect.As a result,the cathode composed of TiN@NG/S delivers a remarkable reversible capacity(1390 mA h g^(-1) at 0.1 C)and excellent cycling performance(730 mA h g^(-1) after 300 cycles).We believe that this work can bring some inspiration for designing high-performance Li-S batteries.
基金funding support from the Natural Science Foundation of China(U2032202,21975243 and 51672262)the National Program for Support of Topnotch Young Professional and the Fundamental Research Funds for the Central Universities(WK2060000026)。
文摘Al-S batteries are promising next generation energy storage devices due to their high theoretical energy density(1340 Wh kg^(-1)),low cost,and safe operation.However,the electrochemical performance of Al-S batteries suffers poor reversibility owing to slow kinetic processes determined by the difficulty of reversible conversion between Al and S.Here,we proposed a single-atom catalysts comprising Co atoms embedded in a nitrogen-doped graphene(Co NG)as an electrochemical catalyst in the sulfur cathode that renders a reduced discharge-charge voltage hysteresis and improved sulfur utilization in the cathode.The structural and electrochemical analyses suggest that the Co NG facilitated both the formation and oxidation of Al S;during the electrochemical reactions of the sulfur species.Consequently,the Co NG-S composite can deliver a considerably reduced voltage hysteresis of 0.76 V and a reversible specific capacity of 1631 m Ah g^(-1) at 0.2 A g^(-1) with a sulfur utilization of more than 97%.
基金This work was supported by the Natural Science Foundation of China(22125902,21975243,U2032202,and U1932201)the National Program for Support of Topnotch Young Professionals,the DNL Cooperation Fund,CAS(DNL202020)+2 种基金the Anhui Science Fund for Distinguished Young Scholars(2208085J15)the National Key R&D Program of China(2022YFA1504101)Users with Excellence Program of Hefei Science Center CAS(2021HSC-UE002).
文摘Sulfur redox reactions render lithium–sulfur(Li–S)batteries with an energy density of>500Whkg−1 but suffer a low practical capacity and fast capacity fade due to sluggish sulfur redox reaction(SRR)kinetics,which lies in the complex reaction process that involves a series of reaction intermediates and proceeds via a cascade reaction.Here,we present a Pt–Cu dual-atom catalyst(Pt/Cu-NG)as an electrocatalyst for sulfur redox reactions.Pt/Cu-NG enabled the rapid conversion of soluble polysulfide intermediates into insoluble Li2S2/Li2S,and consequently,it prevented the accumulation and shuttling of lithium polysulfides,thus outperforming the corresponding single-atom catalysts(SACs)with individual Pt or Cu sites.Operando X-ray absorption spectroscopy and density functional theory calculations revealed that a synergistic effect between the paired Pt and Cu atoms modifies the electronic structure of the Pt site through d-orbital interactions,resulting in an optimal moderate interaction of the metal atom with the different sulfide species.This optimal interaction enhanced charge transfer kinetics and promoted sulfur redox reactions.Our work thus provides important insights on the atomic scale into the synergistic effects operative in dual-atom catalysts and will thus pave the way to electrocatalysts with enhanced efficiency for high-performance Li–S batteries.
基金funding support from the National Natural Science Foundation of China(Nos.22125902,U2032202,and 21975243)the National Program for Support of Topnotch Young Professionals,the Fundamental Research Funds for the Central Universities(No.WK2030020032)+1 种基金the DNL cooperation Fund,CAS(No.DNL202020)the Anhui Science Fund for Distinguished Young Scholars(No.2208085J15).
文摘Li metal has become a strong candidate for anode due to its high theoretical specific capacity and lowest electrochemical potential.However,the poor reversibility caused by continuous chemical and electrochemical degradation hinders the practical application of Li metal.Solid-solution-based metal alloy phases have been proposed as hosts for regulating the non-dendrite electrodeposition,but the fundamental understanding remains unclear due to the drastically different deposition behaviors of Li on them.Here we found the difference in the diffusion coefficient of Li atoms on solid-solution-based metal alloy phases(Li-Mg and Li-Ag alloys)was a major contributor to the different deposition behaviors.The low Li atom diffusion coefficient of Li-Mg alloy showed a preferential Li accumulation on the upper surface rather than the inward-growth plating of Li atoms into alloy foil in Li-Ag alloy.By the process of secondary recrystallization,we improved the diffusion coefficient of Li atoms in Li-Mg alloy that facilitates the inward transfer rather than surface plating of Li atoms.In this case,the recrystallized Li-Mg alloy underwent a solidsolution phase change in the delithiation-lithiation cycles which yielded a high Coulombic efficiency of 99.3%with a reversible gravimetric capacity of 2,874 mAh·g−1 and superior cycling stability over 5,000 h without dendrite growth.
基金supported by the Natural Science Foundation of China(Nos.22125902,U2032202,21975243 and 21825302)the National Program for Support of Topnotch Young Professionals,the Fundamental Research Funds for the Central Universities(No.WK2030020032)+1 种基金the DNL cooperation Fund,CAS(No.DNL202020)the Anhui Science Fund for Distinguished Young Scholars(No.2208085J15).
文摘The undesirable shuttle effect and sluggish redox kinetics of polysulfides seriously result in low sulfur utilization and poor capacity retention.Here,an integrated strategy is proposed by rational designing multifunctional architecture to manipulate the redox kinetics of polysulfides,specifically,by employing iron atoms(Fe-As)and iron-species nanoparticles(Fe-NPs)co-embedded nitrogen-doped carbon nanotube(Fe-NCNT)as catalyst and host for sulfur.The synergistic cooperation of Fe-As and Fe-NPs provides efficient active sites to facilitate the diffusion,strengthen the affinities,and promote the conversion reactions for polysulfides.Furthermore,the NCNT not only offers practical Li+transport pathways but also immobilize the polysulfides effectively.Benefiting from these merits,the Fe-NCNT/S electrodes exhibit high initial specific capacity of 1502.6 mAh/g at 0.1 C,outstanding rate performance(830 mAh/g at 2 C),and good cycling performance(597.8 mAh/g after 500 cycles with an ultralow capacity fading rate of 0.069%per cycle).This work features the distinct interaction of iron atom-nanoparticles on facilitating immobilization-diffusion-transformation process of polysulfides,and it also expected to pave the way for the application in practical Li-S batteries.
基金funding support from the National Natural Science Foundation of China(Nos.U2032202,22125902 and 21975243)DNL cooperation Fund,CAS(No.DNL202020)+1 种基金Fundamental Research Funds for the Central Universities(Nos.WK2060000013 and YD3430002001)Users with Excellence Program of Hefei Science Center CAS(No.2021HSC-UE002)。
文摘Single atom catalysts(SACs)with atomically dispersed transition metals on nitrogen-doped carbon supports have recently emerged as highly active non-noble metal electrocatalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),showing great application potential in Zn-air batteries.However,because of the complex structure-performance relationships of carbon-based SACs in the oxygen electrocatalytic reactions,the contribution of different metal atoms to the catalytic activity of SACs in Zn-air batteries still remains ambiguous.In this study,SACs with atomically dispersed transition metals on nitrogen-doped graphene sheets(M-N@Gs,M=Co,Fe and Ni),featured with similar physicochemical properties and M-N@C configurations,are obtained.By comparing the on-set potentials and the maximum current,we observed that the ORR activity is in the order of Co-N@G>Fe-N@G>Ni-N@G,while the OER activity is in the order of Co-N@G>Ni-N@G>Fe-N@G.The Zn-air batteries with Co-N@G as the air cathode catalysts outperform those with the Fe-N@G and Ni-N@G.This is due to the accelerated charge transfer between Co-N@C active sites and the oxygen-containing reactants.This study could improve our understanding of the design of more efficient bifunctional electrocatalysts for Zn-air batteries at the atomic level.
基金the Natural Science Foundation of China(5176114504621975243)+2 种基金the 100 Talents Program of the Chinese Academy of SciencesNational Program for Support of Topnotch Young Professionaland i Ch EM。
文摘Because of its high theoretical specific capacity and low reduction potential,Li metal is considered to be key to reaching high energy density in rechargeable batteries.In this context,most of the research has focused on suppressing dendrite formation during Li deposition to improve the cycling reversibility and safety of the batteries.Here,covalent organic framework(COF)film coating on a commercial polypropylene separator is applied as an ion redistributor to eliminate Li dendrites.The COF crystallites consist of ordered nanochannels that hinder the movement of anions while allowing Li-ions to transport across,leading to a high Li-ion transference number of 0.77±0.01.The transport of Li-ions across the COF film can be considered to be analogous to beads passing through a Galton Board,a model that demonstrates a statistical concept of a normal distribution.Thus,an even distribution of Li-ions is obtained at the COF/Li metal interface.The controlled Li-ion flux yields a smooth Li metal surface after 1,000 h(500 times)of cycling,leading to a significantly improved cycling stability and reversibility,as demonstrated by Cu||Li half cells,Li||Li symmetric cells,and Li Fe PO4||Li full cells.These results suggest that,following the principle of a Galton Board,nanopore insulators such as COF-based materials are effective ion distributors for the different energy storage or conversion systems.
基金financial support from the National Natural Science Foundation of China (Nos.51761145046,51672262, 21503064)100 Talents Program of the Chinese Academy of Sciences+1 种基金National Program for Support of Top notch Young ProfessionalFundamental Research Funds for the Central Universities (No.WK2060140003) and iChEM。
文摘Electrical double-layer capacitors are widely concerned for their high power density,long cycling life and high cycling efficiency.However,their wide application is limited by their low energy density.In this study,we propose a simple yet environmental friendly method to synthesize cobalt and nitrogen atoms co-doped porous carbon(CoAT-NC) material.Cobalt atoms connected with primarily pyridinic nitrogen atoms can be uniformly dispersed in the amorphous carbon matrix,which is benefit for improving electrical conductivity and density of states of the carbon material.Therefore,an enhanced perfo rmance is expected when CoAT-NC is served as electrode in a supercapacitor device.CoAT-NC displays a good gravimetric capacitance of 160 F/g at 0.5 A/g combing with outstanding capacitance retention of 90% at an extremely high current density of 100 A/g in acid electrolyte.Furthermore,a good energy density of 30 Wh/kg can be obtained in the organic electrolyte.
基金funding from the Natural Science Foundation of China(Nos.51761145046,21975243 and 51672262)support from the 100 Talents Program of the Chinese Academy of Sciencesthe National Program for Support of Top-notch Young Professionals,and iChEM。
文摘Stable solid electrolyte interphase(SEI)has been well established to be critical for the reversible operation of Li(ion)batteries,yet our understanding of its mechanical properties currently remains incomplete.Here,we used an electrochemical quartz crystal microbalance combined with dissipation monitoring(EQCM-D)to investigate SEI formation.By quantitatively estimating in-situ,the change in mass,shear modulus,and viscosity of the SEI,we show that the SEI formation in propylene carbonate(PC)-and ethylene carbonate/diethyl carbonate(EC/DEC)-based electrolytes involves the growth of a rigid laye r followed by a viscoelastic layer,whereas a distinct"one-layer"rigid model is applicable to the SEI formulated in tetraethylene glycol dimethyl ether(TEGDME)-based electrolyte.With the continuous formation of the SEI,its shear modulus decreases accompanied by an increase in viscosity.In TEGDME,the lightest/thinnest SEI(mass lower than in PC by a factor of nine)yet having the greatest stiffness(more than five times that in PC)is obtained.We attribute this behavior to differences in the chemical composition of the SEIs,which have been revealed by tracking the mass-change-per-mole-of-electrontransferred using EQCM-D and further confirmed by X-ray photoelectron spectroscopy.
基金the National Natural Science Foundation of China(Nos.U2032202,21975243 and 51672262)the National Program for Support of Topnotch Young Professional and the Fundamental Research Funds for the Central Universities(No.WK2060000026).
文摘During operation of a lithium metal battery,uneven lithium deposition often results in the growth of lithium dendrites and causes a rapid decay in battery performance and even leads to safety issues.This is still the main hurdle hindering the practical application of lithium metal anodes.We report a new type of Janus separator fabricated by introducing a molecular sieve coating on the surface of the polypropylene separator that serves as a redistribution layer for lithium ions.Our results show that using this layer,the growth of lithium dendrites can be largely inhibited and the battery performance greatly improved.In a typical Li||Cu half-cell with the Janus separator,the Coulombic efficiency of the lithium metal anode can be maintained at>98.5%for over 500 cycles.The cycling life span is also extended by a factor of 8 in the Li||Li symmetric cell.Furthermore,the high-strength coating improves the mechanical properties of the separator,thus enhancing safety.The effectiveness of our strategy is demonstrated by both the inhibited growth of lithium dendrites and the improved battery performance.Our methodology could eventually be generalized for electrode protection in other battery systems.
文摘Portable electrical power sources play increasingly vital roles in our daily lives due to the widespread use of mobile electronic devices and electrical vehicles.Electrochemical capacitors,also referred as supercapacitors(SCs)or ultracapacitors,are an important type of energy storage system with superior advantages of rapid power delivery and recharging compared to other types of energy storage systems.In practice,SCs have played im-
基金the National Natural Science Foundation of China(21503064)Anhui Provincial Natural Science Foundation for support(1508085QE103)+3 种基金the Ministry of Science and Technology of China(2015CB351903)the 100 Talents Program of the Chinese Academy of Sciences,USTC Startupthe Fundamental Research Funds for the Central Universities(WK2060140003)iChEM
文摘Graphene sponge(GS) with microscale size, high mechanical elasticity and electrical conductivity has attracted great interest as a sensing material for piezoresistive pressure sensor. However, GS offering a lower limit of pressure detection with high gauge factor, which is closely dependent on the mechanical and electrical properties and determined by the fabrication process, is still demanded. Here, γ-ray irradiation reduced GS is reported to possess a gauge factor of 1.03 kPa^–1 with pressure detection limit of 10 Pa and high stress retention of 76% after 800 cycles of compressing/relaxation at strain of 50%. Compared with the carbon nanotube(CNT) reinforced GS, the improved lower limit of pressure detection and gauge factor of the GS prepared by γ-ray irradiation is due to the low compression stress(0.9 kPa at stain of 50%). These excellent physical properties of the GS are ascribed to the mild,residual free, and controllable reduction process offered by γ-ray irradiation.