期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Coconut Fiber Pyrolysis: Bio-Oil Characterization for Potential Application as an Alternative Energy Source and Production of Bio-Degradable Plastics
1
作者 Patrick Ssemujju Lubowa hiram ndiritu +1 位作者 Peter Oketch James Mutua 《World Journal of Engineering and Technology》 2024年第2期310-319,共10页
The current energy crisis could be alleviated by enhancing energy generation using the abundant biomass waste resources. Agricultural and forest wastes are the leading organic waste streams that can be transformed int... The current energy crisis could be alleviated by enhancing energy generation using the abundant biomass waste resources. Agricultural and forest wastes are the leading organic waste streams that can be transformed into useful alternative energy resources. Pyrolysis is one of the technologies for converting biomass into more valuable products, such as bio-oil, bio-char, and syngas. This work investigated the production of bio-oil through batch pyrolysis technology. A fixed bed pyrolyzer was designed and fabricated for bio-oil production. The major components of the system include a fixed bed reactor, a condenser, and a bio-oil collector. The reactor was heated using a cylindrical biomass external heater. The pyrolysis process was carried out in a reactor at a pressure of 1atm and a varying operating temperature of 150˚C, 250˚C, 350˚C to 450˚C for 120 minutes. The mass of 1kg of coconut fiber was used with particle sizes between 2.36 mm - 4.75 mm. The results show that the higher the temperature, the more volume of bio-oil produced, with the highest yield being 39.2%, at 450˚C with a heating rate of 10˚C/min. The Fourier transformation Infrared (FTIR) Spectroscopy analysis was used to analyze the bio-oil components. The obtained bio-oil has a pH of 2.4, a density of 1019.385 kg/m<sup>3</sup>, and a calorific value of 17.5 MJ/kg. The analysis also showed the presence of high-oxygenated compounds;carboxylic acids, phenols, alcohols, and branched oxygenated hydrocarbons as the main compounds present in the bio-oil. The results inferred that the liquid product could be bestowed as an alternative resource for polycarbonate material production. 展开更多
关键词 Batch Pyrolysis Technology Coconut Fiber BIO-OIL Fourier Transformation Infrared Analysis
下载PDF
Performance Simulation of a Modified Geothermal Grain Dryer Based at Menengai Well 3 in Kenya
2
作者 Levi Kulundu hiram ndiritu +1 位作者 Gareth Kituu James Kimotho 《World Journal of Engineering and Technology》 2022年第1期59-87,共29页
Geothermal energy can be effectively utilized for grain drying to reduce carbon emissions and also cut operational costs associated with conventional methods. The main challenges encountered in the use of the geotherm... Geothermal energy can be effectively utilized for grain drying to reduce carbon emissions and also cut operational costs associated with conventional methods. The main challenges encountered in the use of the geothermal grain dryer, such as in Menengai, Kenya, include uneven grain drying and long throughput times. Grains near the hot air inlet dry at a faster rate compared to those near the exhaust end. Therefore, the grains must be recirculated within the dryer to achieve uniform moisture distribution. Grain recirculation is energy-intensive as it utilizes electricity running the elevator motors in addition to the suction pump. A Computational Fluid Dynamics (CFD) model was developed to study the airflow pattern and its impact on drying of maize. The model was simulated in ANSYS 21 and validated using experimental data. Finite volume discretization method was employed for meshing. Pressure-based segregated solver was used in the Computational Fluid Dynamics (CFD) simulation. Also, K-Omega turbulent model was used for enhancing wall treatment. The findings indicate that non-uniform hot air distribution across the grain buffer section causes uneven drying. Introducing filleted flow-guides results in a relatively uniform velocity, temperature, and turbulence kinetic energy distribution across the dryer. The average velocity and temperature magnitudes in lower compartments increased by 153.3% and 0.25% respectively for the improved dryer. In the upper compartments, the velocity and temperature increase were 176.5% and 0.22% respectively. 展开更多
关键词 Filleted Flow-Guides Flow Distribution Geothermal Grain Dryer Computational Fluid Dynamics
下载PDF
Performance of Water in Glass Evacuated Tube Solar Water Heater under Kenya Climatic Condition
3
作者 Ernest Kyekyere hiram ndiritu +1 位作者 Meshack Hawi Polline Mwambe 《Computational Water, Energy, and Environmental Engineering》 2021年第2期37-48,共12页
Solar water heaters which provide a cost-effective and environmental friendly approach to hot water generation are in widespread application. Evacuated tube solar water heaters perform better than flat plate solar wat... Solar water heaters which provide a cost-effective and environmental friendly approach to hot water generation are in widespread application. Evacuated tube solar water heaters perform better than flat plate solar water heaters as a result of their greater surface area exposed for sunlight absorption. Water-in-glass evacuated tube solar water heaters are widely used as compared to heat-pipe solar water heaters due to their short payback periods. In this study, the performance of water-in-glass evacuated tube solar water heater is investigated through experiments under the climatic conditions in Kenya. The results revealed a daily efficiency range of 0.58 - 0.65 and a daily final outlet temperature greater than 55<span style="white-space:normal;">°</span>C given an initial temperature of 25°C. 展开更多
关键词 Solar Water Heater Water-in-Glass Evacuated Tube Solar Collector Solar Irradiation
下载PDF
Effect of Exhaust Gas Recirculation on Performance and Emission Characteristics of a Diesel-Piloted Biogas Engine 被引量:1
4
作者 Meshack Hawi Robert Kiplimo hiram ndiritu 《Smart Grid and Renewable Energy》 2015年第4期49-58,共10页
In this research, a Direct Injection Compression Ignition (DICI) engine was modified into a dual-fuel engine that used biogas as the primary fuel and diesel as pilot fuel, with the focus on reduction of harmful exhaus... In this research, a Direct Injection Compression Ignition (DICI) engine was modified into a dual-fuel engine that used biogas as the primary fuel and diesel as pilot fuel, with the focus on reduction of harmful exhaust emissions while maintaining high thermal efficiency. The effect of exhaust gas recirculation (EGR) on engine performance and emission characteristics was studied. The EGR system was developed and tested with different EGR percentages, i.e. 0%, 10%, 20% and 30%. The effect of EGR on exhaust gas temperature and performance parameters like brake specific fuel consumption, brake power and brake thermal efficiency was studied. The performance and emission characteristics of the modified engine were compared with those of the conventional diesel engine. The results showed that EGR led to a decrease in specific fuel consumption and an increase in brake thermal efficiency. With increase in percent (%) of EGR, the percentage increase in brake thermal efficiency was up to 10.3% at quarter load and up to 14.5% at full load for single fuel operation while for dual-fuel operation an increase up to 9.5% at quarter load and up to 11.2% at full load was observed. The results also showed that EGR caused a decrease in exhaust gas temperature;hence it’s potential to reduce NOX emission. However, emissions of HC and CO increased slightly with EGR. 展开更多
关键词 DICI ENGINE Dual-Fuel ENGINE EGR NOX
下载PDF
Performance Assessment of Heat Exchangers for Process Heat Integration
5
作者 Fenwicks Shombe Musonye hiram ndiritu Robert Kinyua 《Energy Engineering》 EI 2021年第2期211-224,共14页
Pinch Analysis is an attractive solution for reduction of thermal energy costs in thermo-chemical industries.In this approach,maximum internally recoverable heat is determined and a heat exchange network is designed t... Pinch Analysis is an attractive solution for reduction of thermal energy costs in thermo-chemical industries.In this approach,maximum internally recoverable heat is determined and a heat exchange network is designed to meet the recovery targets.The thermal performance of a heat exchanger over its lifetime is however a concern to industries.Thermal performance of a heat exchanger is affected by many factors which include the physical prop-erties of the shell and tube materials,and the chemical properties of the heat transferfluid.In this study,thermal performance of shell and tube heat exchangers designed to meet heat recovery targets in a Pinch Analysis study is simulated.The aim of this paper is to present predictions of thermal performances of shell and tube heat exchan-gers with different heat transferfluids and geometries as they undergo fouling degradation.Engineering approaches based on thermodynamic analysis,heat balance and Kern Design equations,as well as what-if simu-lation modeling are used in this work.Shell and tube heat exchangers were designed to meet internal heat recov-ery targets for three process plants,A,B and C.These targets were published in a separate paper.The effects of degradation of the tubes-due to incremental growth of fouling resistance-on thermal performance of the exchan-ger were simulated using Visual Basic Analysis(VBA).Overall,it was found that growth in fouling reduces ther-mal efficiency of shell and tube heat exchangers with an exponential relationship.An increase of 100%of fouling resistance leads to an average reduction of 0.37%heat transfer.Higher values of logarithmic mean temperature difference(LMTD)and higher ratios of external diameter to internal diameter of the exchanger tubes amplify the effect of fouling growth on thermal performance of the exchangers.The results of this work can be applied in pinch analysis,during design of heat exchangers to meet the internal heat recovery targets,especially in predicting how fouling growth can affect these targets.This can also be useful in helping operators of shell and tube heat exchangers to determine cleaning intervals of the exchangers to avoid heat transfer loss. 展开更多
关键词 Pinch analysis internal heat recovery thermal performance fouling resistance fouling growth what if simulation shell and tube heat exchangers
下载PDF
Mesophilic Process and Kinetics Studies of Selected Biomolecules as Potential Enhancers of Biomethanization of Cow Dung in an Anaerobic Tubular Batch Reactor
6
作者 Paul Njogu Francis Xavier Ochieng +5 位作者 Benard Ogembo Stephen Ondimu Christopher Kanali Erick Ronoh Daniel Omondi hiram ndiritu 《Energy and Power Engineering》 2022年第3期147-155,共9页
Mesophilic biogas production and substrate decomposition is one of the significant limiting steps in biogas generation. The rate of generation and quality often affect the viability of biogas systems. This study asses... Mesophilic biogas production and substrate decomposition is one of the significant limiting steps in biogas generation. The rate of generation and quality often affect the viability of biogas systems. This study assessed the potential for biogas process catalysis using powdered Sorghum bicolor L., Zea mays, and Pennisetum glaucum. The kinetics and biogas generation processes were studied. Experiments were conducted in 1 m<sup>3</sup> tubular batch reactors, where batches were dosed with various organic biomolecules. Results show that the use of P. glaucum L. and S. bicolor L. reduced the biogas retention times significantly. Biogas generation commenced after the first day for digesters fed with S. bicolor L. and P. glaucum L. while one with Z. mays and control occurred on day two. The rate of biomethanation and methane content were enhanced. S. bicolor L. led to the highest methane content. Findings reveal that locally available organic biomolecules improved biogas quality and quantity. 展开更多
关键词 MESOPHILIC KINETICS Biomolecules BIOMETHANATION Reaction Rates ANAEROBIC
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部