Magnetic dipole forbidden (M1) transition was studied in large helical device (LHD) and F-, Si- and Ti-like M1 transitions are successfully observed for highly ionized Ar, Kr, Mo and Xe ions. The wavelengths measu...Magnetic dipole forbidden (M1) transition was studied in large helical device (LHD) and F-, Si- and Ti-like M1 transitions are successfully observed for highly ionized Ar, Kr, Mo and Xe ions. The wavelengths measured in visible range for the heavy elements, which are carefully determined with extremely small uncertainties of 0.02 - 0.05 A as a standard wavelength of usual electric dipole (El) plasma emissions, are compared with theoretical predictions. The result shows a good agreement with recent Hatree-Fock calculation including semi-empirical adjustment. The M1 intensity for the F-like ions is examined by analyzing the intensity ratio of M1 to El. Density dependence of the ratio is experimentally verified by comparing with collisional- radiative model calculation on level population. The M1/E1 line ratio for the F-like ions is applied to the α (He^2+) particle diagnostics in ITER, in which a steady-state operation of burning plasmas based on D-T fusion reaction is expected with α particle heating. Unfortunately, the present estimation suggests a negative result for the α particle measurement because the ratio is largely enhanced by the collisional excitation with bulk ions due to high ion temperature of ITER of 10 keV as assumed and the resultant effect of the collisional excitation with α particles becomes less. Meanwhile, the M1 transition, in particular, Ti-like WLIII (W^52+) transition (3627 A) emitted in visible range, is very useful for diagnostics of the impurity behavior and the core plasma parameters in ITER.展开更多
基金supported partially by both the LHD project (NIFS09ULPP527)the JSPS-CAS Core-University program in the field of Plasma and Nuclear Fusion
文摘Magnetic dipole forbidden (M1) transition was studied in large helical device (LHD) and F-, Si- and Ti-like M1 transitions are successfully observed for highly ionized Ar, Kr, Mo and Xe ions. The wavelengths measured in visible range for the heavy elements, which are carefully determined with extremely small uncertainties of 0.02 - 0.05 A as a standard wavelength of usual electric dipole (El) plasma emissions, are compared with theoretical predictions. The result shows a good agreement with recent Hatree-Fock calculation including semi-empirical adjustment. The M1 intensity for the F-like ions is examined by analyzing the intensity ratio of M1 to El. Density dependence of the ratio is experimentally verified by comparing with collisional- radiative model calculation on level population. The M1/E1 line ratio for the F-like ions is applied to the α (He^2+) particle diagnostics in ITER, in which a steady-state operation of burning plasmas based on D-T fusion reaction is expected with α particle heating. Unfortunately, the present estimation suggests a negative result for the α particle measurement because the ratio is largely enhanced by the collisional excitation with bulk ions due to high ion temperature of ITER of 10 keV as assumed and the resultant effect of the collisional excitation with α particles becomes less. Meanwhile, the M1 transition, in particular, Ti-like WLIII (W^52+) transition (3627 A) emitted in visible range, is very useful for diagnostics of the impurity behavior and the core plasma parameters in ITER.