Environmental change attracts particular attention by biologists concerned with the performance of biological systems under stress. To investigate these, dose–response relationships should be clarified. It was previo...Environmental change attracts particular attention by biologists concerned with the performance of biological systems under stress. To investigate these, dose–response relationships should be clarified. It was previously assumed that the fundamental nature of biological dose–responses follows a linear model, either with no threshold or with a threshold below which no effects are expected to occur in biological endpoints. However, substantial literature, including widespread documentation in plants, has revealed that hormesis commonly occurs. Hormesis is highly generalized and can be utilized as a quantitative measure of biological plasticity. Conditioning induced by adaptive responses also occurs in the framework of hormesis and is of particular importance to environmental change biology with regards to evolutionary adaptations.This paper presents additional evidence for hormetic dose responses induced by temperature in plants. The current understanding on hormesis provides a perspective for next generation environmental change research. Hormesis should have a central role in environmental change biology of vegetation.展开更多
Japanese larch(Larix kaempferi(Lamb.)Carr.)and its hybrid are economically important coniferous trees widely grown in the Northern Hemisphere.Ground-level ozone(O_(3))concentrations have increased since the preindustr...Japanese larch(Larix kaempferi(Lamb.)Carr.)and its hybrid are economically important coniferous trees widely grown in the Northern Hemisphere.Ground-level ozone(O_(3))concentrations have increased since the preindustrial era,and research projects showed that Japanese larch is susceptible to elevated O_(3)exposures.Therefore,methodologies are needed to(1)protect Japanese larch against O_(3)damage and(2)conduct biomonitoring of O_(3)in Japanese larch forests and,thus,monitor O_(3)risks to Japanese larch.For the first time,this study evaluates whether the synthetic chemical ethylenediurea(EDU)can protect Japanese larch against O_(3)damage,in two independent experiments.In the first experiment,seedling communities,simulating natural regeneration,were treated with EDU(0,100,200,and 400 mg L^(-1))and exposed to either ambient or elevated O_(3)in a growing season.In the second experiment,individually-grown saplings were treated with EDU(0,200 and 400 mg L-1)and exposed to ambient O_(3)in two growing seasons and to elevated O_(3)in the succeeding two growing seasons.The two experiments revealed that EDU concentrations of 200-400 mg L^(-1)could protect Japanese larch seedling communities and individual saplings against O_(3)-induced inhibition of growth and productivity.However,EDU concentrations≤200 mg L^(-1)did offer only partial protection when seedling communities were coping with higher level of O_(3)-induced stress,and only 400 mg EDU L^(-1)fully protected communities under higher stress.Therefore,we conclude that among the concentrations tested the concentration offering maximum protection to Japanese larch plants under high competition and O_(3)-induced stress is that of 400 mg EDU L^(-1).The results of this study can provide a valuable resource of information for applied forestry in an O_(3)-polluted world.展开更多
Climate change can intensify drought in many regions of the world and lead to more frequent drought events or altered cycles of soil water status.Therefore,it is important to enhance the tolerance to drought and thus ...Climate change can intensify drought in many regions of the world and lead to more frequent drought events or altered cycles of soil water status.Therefore,it is important to enhance the tolerance to drought and thus health,vigor,and success of transplantation seedlings used in the forestry by modifying fertilization and promoting mycorrhization.Here,we sowed seeds of Japanese larch(Larix kaempferi)in 0.2-L containers with 0.5 g(low fertilization;LF)or 2 g(high fertilization;HF)of slow-release fertilizer early in the growing season.One month later,we irrigated seedlings with non-sterilized ectomycorrhizal inoculum(ECM)or sterilized solution(non-ECM),and after about 2 months,plants were either kept well watered(WW;500 mL water/plant/week)or subjected to drought(DR;50 mL water per plant/week)until the end of the growing season.HF largely stimulated plant growth and above-and belowground biomass production,eff ects that are of practical signifi cance,but caused a small decrease in stomatal conductance(Gs 390)and transpiration rate(E 390),which in practice is insignifi cant.ECM treatment resulted in moderate inhibition of seedling growth and biomass and largely canceled out the enhancement of biomass and foliar K content by HF.DR caused a large decrease in CO 2 assimilation,and enhanced stomatal closure and induced senescence.DR also largely depleted foliar Mg and enriched foliar K.Although DR caused a large decrease in foliar P content in LF,it moderately increased P in HF.Likewise,DR increased foliar K in HF but not in LF,and decreased foliar P in ECM plants but not in non-ECM plants.Conversely,ECM plants exhibited a large enrichment in foliar P under WW and had a lower water potential under DR when grown in LF.These results indicate that the drought tolerance and health and vigor of Japanese larch seedlings can be modifi ed by soil fertility and soil microorganisms.This study provides a basis for new multifactorial research programs aimed at producing seedlings of superior quality for forestation under climate change.展开更多
The interactive eff ects of ozone,soil nutrient availability and root microorganisms on physiological,growth,and productivity traits were studied for the fi rst time for Japanese larch(Larix kaempferi)seedlings grown ...The interactive eff ects of ozone,soil nutrient availability and root microorganisms on physiological,growth,and productivity traits were studied for the fi rst time for Japanese larch(Larix kaempferi)seedlings grown in containers over a growing season,using a free air ozoneconcentration enrichment exposure system.High nutrient availability altered leaf and root nutrient dynamics and enhanced plant growth;however,it also enhanced seedling susceptibility to damping-off disease compared to low nutrient availability.Negative eff ects of elevated ozone,as compared with ambient ozone,on leaf gas exchange and plant stem form were neither off set nor exacerbated by soil nutrient availability and root colonizers.Such negative eff ects suggest that elevated ozone may have implications for ecological health even when plant vigor is limited by factors other than ozone.Inoculation of roots with ectomycorrhizae had negligible infl uence on the eff ects of either soil nutrient availability or ozone.However,this lack of eff ect may be upon impeded formation of complete mycorrhizal root tips due to factors other than the manipulated variables.B and Na appeared to have an important role in stress responses,so further studies to examine their link with physiological mechanisms as a function of time.This study provides an important perspective for designing forestry practices to enhance seedling health.展开更多
基金supported by JSPS KAKENHI Grant Number JP17F17102the US Air Force [AFOSR FA9550-13-1-0047]ExxonMobil Foundation [S18200000000256]
文摘Environmental change attracts particular attention by biologists concerned with the performance of biological systems under stress. To investigate these, dose–response relationships should be clarified. It was previously assumed that the fundamental nature of biological dose–responses follows a linear model, either with no threshold or with a threshold below which no effects are expected to occur in biological endpoints. However, substantial literature, including widespread documentation in plants, has revealed that hormesis commonly occurs. Hormesis is highly generalized and can be utilized as a quantitative measure of biological plasticity. Conditioning induced by adaptive responses also occurs in the framework of hormesis and is of particular importance to environmental change biology with regards to evolutionary adaptations.This paper presents additional evidence for hormetic dose responses induced by temperature in plants. The current understanding on hormesis provides a perspective for next generation environmental change research. Hormesis should have a central role in environmental change biology of vegetation.
基金supported in part by Research Grant#201802 of the Forestry and Forest Products Research Instituteby KAKENHI Grant Number JP17F17102 of the Japan Society for the Promotion of Science(JSPS)。
文摘Japanese larch(Larix kaempferi(Lamb.)Carr.)and its hybrid are economically important coniferous trees widely grown in the Northern Hemisphere.Ground-level ozone(O_(3))concentrations have increased since the preindustrial era,and research projects showed that Japanese larch is susceptible to elevated O_(3)exposures.Therefore,methodologies are needed to(1)protect Japanese larch against O_(3)damage and(2)conduct biomonitoring of O_(3)in Japanese larch forests and,thus,monitor O_(3)risks to Japanese larch.For the first time,this study evaluates whether the synthetic chemical ethylenediurea(EDU)can protect Japanese larch against O_(3)damage,in two independent experiments.In the first experiment,seedling communities,simulating natural regeneration,were treated with EDU(0,100,200,and 400 mg L^(-1))and exposed to either ambient or elevated O_(3)in a growing season.In the second experiment,individually-grown saplings were treated with EDU(0,200 and 400 mg L-1)and exposed to ambient O_(3)in two growing seasons and to elevated O_(3)in the succeeding two growing seasons.The two experiments revealed that EDU concentrations of 200-400 mg L^(-1)could protect Japanese larch seedling communities and individual saplings against O_(3)-induced inhibition of growth and productivity.However,EDU concentrations≤200 mg L^(-1)did offer only partial protection when seedling communities were coping with higher level of O_(3)-induced stress,and only 400 mg EDU L^(-1)fully protected communities under higher stress.Therefore,we conclude that among the concentrations tested the concentration offering maximum protection to Japanese larch plants under high competition and O_(3)-induced stress is that of 400 mg EDU L^(-1).The results of this study can provide a valuable resource of information for applied forestry in an O_(3)-polluted world.
基金supported by JSPS KAKENHI Grant Number JP17F17102 (to EA and MK)Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (NUIST)(No. 003080)the Jiangsu Distinguished Professor program of the People’s Government of Jiangsu Province
文摘Climate change can intensify drought in many regions of the world and lead to more frequent drought events or altered cycles of soil water status.Therefore,it is important to enhance the tolerance to drought and thus health,vigor,and success of transplantation seedlings used in the forestry by modifying fertilization and promoting mycorrhization.Here,we sowed seeds of Japanese larch(Larix kaempferi)in 0.2-L containers with 0.5 g(low fertilization;LF)or 2 g(high fertilization;HF)of slow-release fertilizer early in the growing season.One month later,we irrigated seedlings with non-sterilized ectomycorrhizal inoculum(ECM)or sterilized solution(non-ECM),and after about 2 months,plants were either kept well watered(WW;500 mL water/plant/week)or subjected to drought(DR;50 mL water per plant/week)until the end of the growing season.HF largely stimulated plant growth and above-and belowground biomass production,eff ects that are of practical signifi cance,but caused a small decrease in stomatal conductance(Gs 390)and transpiration rate(E 390),which in practice is insignifi cant.ECM treatment resulted in moderate inhibition of seedling growth and biomass and largely canceled out the enhancement of biomass and foliar K content by HF.DR caused a large decrease in CO 2 assimilation,and enhanced stomatal closure and induced senescence.DR also largely depleted foliar Mg and enriched foliar K.Although DR caused a large decrease in foliar P content in LF,it moderately increased P in HF.Likewise,DR increased foliar K in HF but not in LF,and decreased foliar P in ECM plants but not in non-ECM plants.Conversely,ECM plants exhibited a large enrichment in foliar P under WW and had a lower water potential under DR when grown in LF.These results indicate that the drought tolerance and health and vigor of Japanese larch seedlings can be modifi ed by soil fertility and soil microorganisms.This study provides a basis for new multifactorial research programs aimed at producing seedlings of superior quality for forestation under climate change.
基金The authors are grateful to Mr.Tatsushiro Ueda of Dalton Co.(Hokkaido Branch,Japan)for managing the O3 FACE system and to Mr.Yamamoto and Mr.Noda of Hokkaido University,Japan,for contributing to the ectomycorrhizae analysis.E.A.acknowledges multiyear support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science&Technology(NUIST),Nanjing,China(Grant No.1411021901008).
文摘The interactive eff ects of ozone,soil nutrient availability and root microorganisms on physiological,growth,and productivity traits were studied for the fi rst time for Japanese larch(Larix kaempferi)seedlings grown in containers over a growing season,using a free air ozoneconcentration enrichment exposure system.High nutrient availability altered leaf and root nutrient dynamics and enhanced plant growth;however,it also enhanced seedling susceptibility to damping-off disease compared to low nutrient availability.Negative eff ects of elevated ozone,as compared with ambient ozone,on leaf gas exchange and plant stem form were neither off set nor exacerbated by soil nutrient availability and root colonizers.Such negative eff ects suggest that elevated ozone may have implications for ecological health even when plant vigor is limited by factors other than ozone.Inoculation of roots with ectomycorrhizae had negligible infl uence on the eff ects of either soil nutrient availability or ozone.However,this lack of eff ect may be upon impeded formation of complete mycorrhizal root tips due to factors other than the manipulated variables.B and Na appeared to have an important role in stress responses,so further studies to examine their link with physiological mechanisms as a function of time.This study provides an important perspective for designing forestry practices to enhance seedling health.