信息时代,数字技术对普通公众的赋权加剧了不同文化之间的矛盾和冲突。因此在数字文化背景下,要解决的核心问题是不同文化如何和谐共处,而战略传播是解决这一问题的关键手段。其中沟通是消解意义误读、缓和冲突并形塑公众认知的重要环...信息时代,数字技术对普通公众的赋权加剧了不同文化之间的矛盾和冲突。因此在数字文化背景下,要解决的核心问题是不同文化如何和谐共处,而战略传播是解决这一问题的关键手段。其中沟通是消解意义误读、缓和冲突并形塑公众认知的重要环节。为此,本研究对Web of Science数据库中2007—2023年的国际战略传播文献进行了可视化分析,发现该领域研究呈现出历时性、共时性以及数字化特征,而该特征下的国际战略传播研究发生了认知维度的转向。基于认知转向,本研究以“意义构建—认知争夺—战略认同”为框架构建国际战略传播沟通机制模型,该模型从多元主体协商构建话语联盟、多维话语整合驱动认知争夺、多重受众聚合共建战略认同三个方面呈现国际战略传播的沟通机制。在此基础上,本研究分析了建立战略传播沟通机制的创新因素,以期提升战略传播沟通效能。展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how th...In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how the global temperature will evolve in the coming 2023/24 boreal winter.In this report,as shown in the multi-model ensemble mean(MME)prediction released by the Institute of Atmospheric Physics at the Chinese Academy of Sciences,a medium-to-strong eastern Pacific El Niño event will reach its mature phase in the following 2−3 months,which tends to excite an anomalous anticyclone over the western North Pacific and the Pacific-North American teleconnection,thus serving to modulate the winter climate in East Asia and North America.Despite some uncertainty due to unpredictable internal atmospheric variability,the global mean surface temperature(GMST)in the 2023/24 winter will likely be the warmest in recorded history as a consequence of both the El Niño event and the long-term global warming trend.Specifically,the middle and low latitudes of Eurasia are expected to experience an anomalously warm winter,and the surface air temperature anomaly in China will likely exceed 2.4 standard deviations above climatology and subsequently be recorded as the warmest winter since 1991.Moreover,the necessary early warnings are still reliable in the timely updated mediumterm numerical weather forecasts and sub-seasonal-to-seasonal prediction.展开更多
Sanchuan ham is appreciated in Yunnan Province,China,for its characteristic flavor and taste,while the microbial community structure and biogenic amines content remain unclear during fermentation processes.In this stu...Sanchuan ham is appreciated in Yunnan Province,China,for its characteristic flavor and taste,while the microbial community structure and biogenic amines content remain unclear during fermentation processes.In this study,we explored the physicochemical property,biogenic amines concentration and microbial diversity of external and internal Sanchuan ham by high-throughput sequencing during the processing of Sanchuan ham.Results showed that the nitrite remained at a stable level of 0.15 mg/kg which was significantly lower than the national health standard safety level of 20 mg/kg.In addition,compared with fresh hams,the content of total free amino acids in ripe Sanchuan ham has grown 14 folds;sour and bitter were the main tastes of Sanchuan ham.Notably,the concentration of cadaverine was the highest of all biogenic amines during the entire fermentation period.At the bacterial phyla level,Firmicutes and Actinobacteria were the two main phyla,while at the genus level,Staphylococcus was a significant strain throughout the whole fermentation.Moreover,the dry stage has a great impact on the succession change of microbial community structure.Simultaneously,the change trends and composition of bacteria in the interior have slight discrepancies with those of the exterior of Sanchuan ham.展开更多
目的:探讨弥漫性慢性鼻窦炎伴鼻息肉(chronic rhinosinusitis with nasal polyps,CRSwNP)患者的临床特征与初次鼻内镜术后嗅觉预后的关系,建立并验证弥漫性CRSwNP患者初次鼻内镜术后嗅觉改善不佳的列线图预测模型。方法:收集并分析于南...目的:探讨弥漫性慢性鼻窦炎伴鼻息肉(chronic rhinosinusitis with nasal polyps,CRSwNP)患者的临床特征与初次鼻内镜术后嗅觉预后的关系,建立并验证弥漫性CRSwNP患者初次鼻内镜术后嗅觉改善不佳的列线图预测模型。方法:收集并分析于南京医科大学第一附属医院耳鼻咽喉科行初次鼻内镜手术治疗的67例弥漫性CRSwNP嗅觉障碍患者的临床资料,根据术后嗅觉改善情况分为嗅觉改善组(50例)和嗅觉未改善组(17例),通过单因素和多因素Logistic回归分析影响嗅觉改善的因素,据此建立弥漫性CRSwNP患者初次鼻内镜术后嗅觉预后的列线图模型并评估其预测效果。结果:多因素分析结果提示病程长短(β=0.527,OR=1.693,95%CI:1.139~2.517)、Lund-Mackay鼻窦CT评分(β=0.704,OR=2.021,95%CI:1.208~3.382)、外周血嗜酸性粒细胞比值(β=0.311,OR=1.365,95%CI:1.026~1.815)、筛窦与上颌窦CT评分的比值(β=0.954,OR=2.597,95%CI:1.263~5.340)是弥漫性CRSwNP初次鼻内镜术后嗅觉改善不佳的独立预测因素,据此构建的列线图模型预测弥漫性CRSwNP初次鼻内镜术后嗅觉改善的受试者工作特征(reciever operating characteristic,ROC)曲线的曲线下面积(area under curve,AUC)为0.770(95%CI:0.658~0.881,P<0.01),C指数为0.856(0.817~0.894),校准曲线的绝对误差平均为0.034。结论:根据病程、Lund-Mackay鼻窦CT评分、外周血嗜酸性粒细胞比值、筛窦与上颌窦CT评分的比值构建的列线图模型可以预测弥漫性CRSwNP患者初次鼻内镜术后的嗅觉改善情况,对临床工作有一定的指导作用。展开更多
Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a rea...Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.展开更多
To guide the illuminating design to improve the on-state performances of gallium arsenide(GaAs)photoconductive semiconductor switch(PCSS),the effect of spot size on the operation mode of GaAsPCSS based on a semi-insul...To guide the illuminating design to improve the on-state performances of gallium arsenide(GaAs)photoconductive semiconductor switch(PCSS),the effect of spot size on the operation mode of GaAsPCSS based on a semi-insulating wafer with a thickness of 1 mm,triggered by a 1064-nm extrinsic laser beam with the rectangular spot,has been investigated experimentally.It is found that the variation of the spot size in length and width can act on the different parts of the output waveform integrating the characteristics of the linear and nonlinear modes,and then significantly boosts the PCSS toward different operation modes.On this basis,a two-channel model containing the active and passive parts is introduced to interpret the relevant influencing mechanisms.Results indicate that the increased spot length can peak the amplitude of static domains in the active part to enhance the development of the nonlinear switching,while the extended spot width can change the distribution of photogenerated carriers on both parts to facilitate the linear switching and weaken the nonlinear switching,which have been proved by comparing the domain evolutions under different spot sizes.展开更多
We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed b...We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed by low-temperature annealing.This allows the systematic design of crystalline C_(60)as an active material for Li-ion battery anodes.The hTNO@C_(60)composite demonstrates outstanding cyclic stability,retaining a capacity of 465 mA h g^(-1)after 1,000 cycles at 1 A g^(-1)It maintains a capacity of 98 mA h g^(-1)even after16,000 ultralong cycles at 8 A g^(-1)The enhancement in electrochemical properties is attributed to the successful growth and uniform doping of crystalline C_(60),resulting in improved electrical conductivity.The excellent electrochemical stability and properties of these composites make them promising anode materials.展开更多
As the primary suppliers of cyclable sodium ions,O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries.To advance the development of high-ener...As the primary suppliers of cyclable sodium ions,O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries.To advance the development of high-energy sodium-ion batteries,it is crucial to explore cathode materials operating at high voltages while maintaining a stable cycling behavior.The orbital and electronic structure of the octahedral center metal element plays a crucial role in maintaining the octahedra structural integrity and improving Na^(+)ion diffusion by introducing heterogeneous chemical bonding.Inspired by the abundant configuration of extra nuclear electrons and large ion radius,we employed trace amounts of tungsten in this study.The obtained cathode material can promote the reversibility of oxygen redox reactions in the high-voltage region and inhibit the loss of lattice oxygen.Additionally,the formation of a Na_(2)WO_(4) coating on the material surface can improve the interfacial stability and interface ions diffusion.It demonstrates an initial Coulombic efficiency(ICE)of 94.6%along with 168.5 mA h g^(-1 )discharge capacity within the voltage range of 1.9-4.35 V.These findings contribute to the advancement of high-energy sodium-ion batteries by providing insights into the benefits of tungsten doping and Na_(2)WO_(4) coating on cathode materials.展开更多
The Ninety East Ridge in the Indian Ocean has complex and unique characteristics.The concentrations and distribution characteristics of 10 trace metals(V,Cr,Mn,Fe,Co,Ni,Cu,Cd,Pb,and U)in seawater from the Ninety East ...The Ninety East Ridge in the Indian Ocean has complex and unique characteristics.The concentrations and distribution characteristics of 10 trace metals(V,Cr,Mn,Fe,Co,Ni,Cu,Cd,Pb,and U)in seawater from the Ninety East Ridge in the Indian Ocean were investigated.Results show that the average concentrations of different trace metals in all the collected seawater samples were 1.134μg/L for V,0.158μg/L for Cr,0.489μg/L for Mn,0.427μg/L for Fe,0.011μg/L for Co,0.395μg/L for Ni,0.403μg/L for Cu,0.097μg/L for Cd,0.139μg/L for Pb,and 3.470μg/L for U.Differences in the horizontal and vertical distributions of all measured trace metals were revealed,and the occurrence of high concentrations was nonuniform.In addition,the significant differences in the concentration distribution of different trace metals in seawater on both sides of the Ninety East Ridge present regional segmentation in the area for various trace metals in deep sea water.This study provided basic data for future investigations on the environmental and ecological impact of trace metals in the Indian Ocean and the potential water mass transport mechanism.展开更多
Environmental DNA(eDNA)has been used as an important tool for fish diversity analysis,which can greatly solve the problems in traditional survey methodology.However,little work has been done on the actual monitoring a...Environmental DNA(eDNA)has been used as an important tool for fish diversity analysis,which can greatly solve the problems in traditional survey methodology.However,little work has been done on the actual monitoring accuracy of eDNA.In this study,we analyzed the current status of fish resources in Erhai Lake in Yunnan,SW China,by dividing the lake into three sectors according to habitat differences,and compared the results of eDNA and traditional capture methods to investigate the shortcomings of the current analysis of eDNA results.A total of 27 fish species were detected by eDNA and traditional capture methods,including 20 and 19 fish species,respectively,and additional differences in fish composition between the two methods.The alpha diversity showed higher fish abundance and lower fish diversity by eDNA method compared to the traditional capture method,demonstrating that eDNA was not superior for use in fish diversity analysis.Fish community similarity analysis showed that community differences were generally significant for eDNA(P<0.05).RDA analysis indicated that environmental factors did not significantly affect fish communities monitored by the eDNA method.However,water temperature,aquatic plants,and water depth had significant(P<0.05)effects on fish communities in the traditional capture method,suggesting that eDNA results are insensitive to the effects of environmental factors.Our results illustrate the effectiveness of eDNA in fish identification and the issues in quantification compared to traditional capture methods.Therefore,combining eDNA with traditional methods is a more effective method for analyzing eDNA metabarcoding,following which the protocols of both quantitative methods can be designed to explore the regularity of eDNA quantification.展开更多
Eukaryotic genomes are hierarchically packaged into cell nucleus,affecting gene regulation.The genome is organized into multiscale structural units,including chromosome territories,compartments,topologically associati...Eukaryotic genomes are hierarchically packaged into cell nucleus,affecting gene regulation.The genome is organized into multiscale structural units,including chromosome territories,compartments,topologically associating domains(TADs),and DNA loops.The identification of these hierarchical structures has benefited from the development of experimental approaches,such as 3C-based methods(Hi-C,ChIA-PET,etc.),imaging tools(2D-FISH,3D-FISH,Cryo-FISH,etc.)and ligation-free methods(GAM,SPRITE,etc.).In recent two decades,numerous studies have shown that the 3D organization of genome plays essential roles in multiple cellular processes via various mechanisms,such as regulating enhancer activity and promoter-enhancer interactions.However,there are relatively few studies about the 3D genome in livestock species.Therefore,studies for exploring the function of 3D genomes in livestock are urgently needed to provide a more comprehensive understanding of potential relationships between the genome and production traits.In this review,we summarize the recent advances of 3D genomics and its biological functions in human and mouse studies,drawing inspiration to explore the 3D genomics of livestock species.We then mainly focus on the biological functions of 3D genome organization in muscle development and its implications in animal breeding.展开更多
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ...Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.展开更多
文摘信息时代,数字技术对普通公众的赋权加剧了不同文化之间的矛盾和冲突。因此在数字文化背景下,要解决的核心问题是不同文化如何和谐共处,而战略传播是解决这一问题的关键手段。其中沟通是消解意义误读、缓和冲突并形塑公众认知的重要环节。为此,本研究对Web of Science数据库中2007—2023年的国际战略传播文献进行了可视化分析,发现该领域研究呈现出历时性、共时性以及数字化特征,而该特征下的国际战略传播研究发生了认知维度的转向。基于认知转向,本研究以“意义构建—认知争夺—战略认同”为框架构建国际战略传播沟通机制模型,该模型从多元主体协商构建话语联盟、多维话语整合驱动认知争夺、多重受众聚合共建战略认同三个方面呈现国际战略传播的沟通机制。在此基础上,本研究分析了建立战略传播沟通机制的创新因素,以期提升战略传播沟通效能。
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
基金the Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LYDQC010)the National Natural Science Foundation of China(Grant No.42175045).
文摘In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how the global temperature will evolve in the coming 2023/24 boreal winter.In this report,as shown in the multi-model ensemble mean(MME)prediction released by the Institute of Atmospheric Physics at the Chinese Academy of Sciences,a medium-to-strong eastern Pacific El Niño event will reach its mature phase in the following 2−3 months,which tends to excite an anomalous anticyclone over the western North Pacific and the Pacific-North American teleconnection,thus serving to modulate the winter climate in East Asia and North America.Despite some uncertainty due to unpredictable internal atmospheric variability,the global mean surface temperature(GMST)in the 2023/24 winter will likely be the warmest in recorded history as a consequence of both the El Niño event and the long-term global warming trend.Specifically,the middle and low latitudes of Eurasia are expected to experience an anomalously warm winter,and the surface air temperature anomaly in China will likely exceed 2.4 standard deviations above climatology and subsequently be recorded as the warmest winter since 1991.Moreover,the necessary early warnings are still reliable in the timely updated mediumterm numerical weather forecasts and sub-seasonal-to-seasonal prediction.
基金funded by National Natural Science Foundation of China(31460445)Science and Technology Talents and Platform Program of Yunnan Province,No.202105AF150049Yunnan University Key Laboratory of Food Microbial Resources and Utilization(Yunjiaofa[2018]No.135)。
文摘Sanchuan ham is appreciated in Yunnan Province,China,for its characteristic flavor and taste,while the microbial community structure and biogenic amines content remain unclear during fermentation processes.In this study,we explored the physicochemical property,biogenic amines concentration and microbial diversity of external and internal Sanchuan ham by high-throughput sequencing during the processing of Sanchuan ham.Results showed that the nitrite remained at a stable level of 0.15 mg/kg which was significantly lower than the national health standard safety level of 20 mg/kg.In addition,compared with fresh hams,the content of total free amino acids in ripe Sanchuan ham has grown 14 folds;sour and bitter were the main tastes of Sanchuan ham.Notably,the concentration of cadaverine was the highest of all biogenic amines during the entire fermentation period.At the bacterial phyla level,Firmicutes and Actinobacteria were the two main phyla,while at the genus level,Staphylococcus was a significant strain throughout the whole fermentation.Moreover,the dry stage has a great impact on the succession change of microbial community structure.Simultaneously,the change trends and composition of bacteria in the interior have slight discrepancies with those of the exterior of Sanchuan ham.
文摘目的:探讨弥漫性慢性鼻窦炎伴鼻息肉(chronic rhinosinusitis with nasal polyps,CRSwNP)患者的临床特征与初次鼻内镜术后嗅觉预后的关系,建立并验证弥漫性CRSwNP患者初次鼻内镜术后嗅觉改善不佳的列线图预测模型。方法:收集并分析于南京医科大学第一附属医院耳鼻咽喉科行初次鼻内镜手术治疗的67例弥漫性CRSwNP嗅觉障碍患者的临床资料,根据术后嗅觉改善情况分为嗅觉改善组(50例)和嗅觉未改善组(17例),通过单因素和多因素Logistic回归分析影响嗅觉改善的因素,据此建立弥漫性CRSwNP患者初次鼻内镜术后嗅觉预后的列线图模型并评估其预测效果。结果:多因素分析结果提示病程长短(β=0.527,OR=1.693,95%CI:1.139~2.517)、Lund-Mackay鼻窦CT评分(β=0.704,OR=2.021,95%CI:1.208~3.382)、外周血嗜酸性粒细胞比值(β=0.311,OR=1.365,95%CI:1.026~1.815)、筛窦与上颌窦CT评分的比值(β=0.954,OR=2.597,95%CI:1.263~5.340)是弥漫性CRSwNP初次鼻内镜术后嗅觉改善不佳的独立预测因素,据此构建的列线图模型预测弥漫性CRSwNP初次鼻内镜术后嗅觉改善的受试者工作特征(reciever operating characteristic,ROC)曲线的曲线下面积(area under curve,AUC)为0.770(95%CI:0.658~0.881,P<0.01),C指数为0.856(0.817~0.894),校准曲线的绝对误差平均为0.034。结论:根据病程、Lund-Mackay鼻窦CT评分、外周血嗜酸性粒细胞比值、筛窦与上颌窦CT评分的比值构建的列线图模型可以预测弥漫性CRSwNP患者初次鼻内镜术后的嗅觉改善情况,对临床工作有一定的指导作用。
基金Supported by International Technology Cooperation Program of Science and Technology Commission of Shanghai Municipality of China(Grant No.21160710600)National Nature Science Foundation of China(Grant No.52372393)Shanghai Pujiang Program of China(Grant No.21PJD075).
文摘Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.
基金supported in part by the Huxiang Youth Talent Support Program(No.2020RC3030)in part by the Foundation of State Key Laboratory of Pulsed Power Laser Technology(Nos.SKL2021ZR02 and SKL2021KF05)。
文摘To guide the illuminating design to improve the on-state performances of gallium arsenide(GaAs)photoconductive semiconductor switch(PCSS),the effect of spot size on the operation mode of GaAsPCSS based on a semi-insulating wafer with a thickness of 1 mm,triggered by a 1064-nm extrinsic laser beam with the rectangular spot,has been investigated experimentally.It is found that the variation of the spot size in length and width can act on the different parts of the output waveform integrating the characteristics of the linear and nonlinear modes,and then significantly boosts the PCSS toward different operation modes.On this basis,a two-channel model containing the active and passive parts is introduced to interpret the relevant influencing mechanisms.Results indicate that the increased spot length can peak the amplitude of static domains in the active part to enhance the development of the nonlinear switching,while the extended spot width can change the distribution of photogenerated carriers on both parts to facilitate the linear switching and weaken the nonlinear switching,which have been proved by comparing the domain evolutions under different spot sizes.
基金supported by a research program through the National Research Foundation of Korea (NRF),funded by MSIT and MEST (NRF-2018R1A5A1025594,NRF-2021R1A4A1022198,and 2022R1A2B5B01001943)。
文摘We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed by low-temperature annealing.This allows the systematic design of crystalline C_(60)as an active material for Li-ion battery anodes.The hTNO@C_(60)composite demonstrates outstanding cyclic stability,retaining a capacity of 465 mA h g^(-1)after 1,000 cycles at 1 A g^(-1)It maintains a capacity of 98 mA h g^(-1)even after16,000 ultralong cycles at 8 A g^(-1)The enhancement in electrochemical properties is attributed to the successful growth and uniform doping of crystalline C_(60),resulting in improved electrical conductivity.The excellent electrochemical stability and properties of these composites make them promising anode materials.
基金supported by the National Natural Science Foundation of China(Grant No.52272194)LiaoNing Revitalization Talents Program(Grant No.XLYC2007155)。
文摘As the primary suppliers of cyclable sodium ions,O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries.To advance the development of high-energy sodium-ion batteries,it is crucial to explore cathode materials operating at high voltages while maintaining a stable cycling behavior.The orbital and electronic structure of the octahedral center metal element plays a crucial role in maintaining the octahedra structural integrity and improving Na^(+)ion diffusion by introducing heterogeneous chemical bonding.Inspired by the abundant configuration of extra nuclear electrons and large ion radius,we employed trace amounts of tungsten in this study.The obtained cathode material can promote the reversibility of oxygen redox reactions in the high-voltage region and inhibit the loss of lattice oxygen.Additionally,the formation of a Na_(2)WO_(4) coating on the material surface can improve the interfacial stability and interface ions diffusion.It demonstrates an initial Coulombic efficiency(ICE)of 94.6%along with 168.5 mA h g^(-1 )discharge capacity within the voltage range of 1.9-4.35 V.These findings contribute to the advancement of high-energy sodium-ion batteries by providing insights into the benefits of tungsten doping and Na_(2)WO_(4) coating on cathode materials.
基金Supported by the Natural Science Foundation of Shandong Province(No.ZR2021MD079)the APEC Cooperation Fund(No.WJ1323001)the Asian Cooperation Fund(No.WJ1223001)。
文摘The Ninety East Ridge in the Indian Ocean has complex and unique characteristics.The concentrations and distribution characteristics of 10 trace metals(V,Cr,Mn,Fe,Co,Ni,Cu,Cd,Pb,and U)in seawater from the Ninety East Ridge in the Indian Ocean were investigated.Results show that the average concentrations of different trace metals in all the collected seawater samples were 1.134μg/L for V,0.158μg/L for Cr,0.489μg/L for Mn,0.427μg/L for Fe,0.011μg/L for Co,0.395μg/L for Ni,0.403μg/L for Cu,0.097μg/L for Cd,0.139μg/L for Pb,and 3.470μg/L for U.Differences in the horizontal and vertical distributions of all measured trace metals were revealed,and the occurrence of high concentrations was nonuniform.In addition,the significant differences in the concentration distribution of different trace metals in seawater on both sides of the Ninety East Ridge present regional segmentation in the area for various trace metals in deep sea water.This study provided basic data for future investigations on the environmental and ecological impact of trace metals in the Indian Ocean and the potential water mass transport mechanism.
基金Supported by the Project of Basic Investigation on Ecological Environment Quality of Erhai Lake(No.TPDL-2021-C 265)the Ecological Effects,Population Regulation and Management Strategies of Invasion of Japanese Smelt(Hypomesus nipponensis)in Erhai Lake funded by the government of Dali City,Yunnan Province,China(No.[2018]447)。
文摘Environmental DNA(eDNA)has been used as an important tool for fish diversity analysis,which can greatly solve the problems in traditional survey methodology.However,little work has been done on the actual monitoring accuracy of eDNA.In this study,we analyzed the current status of fish resources in Erhai Lake in Yunnan,SW China,by dividing the lake into three sectors according to habitat differences,and compared the results of eDNA and traditional capture methods to investigate the shortcomings of the current analysis of eDNA results.A total of 27 fish species were detected by eDNA and traditional capture methods,including 20 and 19 fish species,respectively,and additional differences in fish composition between the two methods.The alpha diversity showed higher fish abundance and lower fish diversity by eDNA method compared to the traditional capture method,demonstrating that eDNA was not superior for use in fish diversity analysis.Fish community similarity analysis showed that community differences were generally significant for eDNA(P<0.05).RDA analysis indicated that environmental factors did not significantly affect fish communities monitored by the eDNA method.However,water temperature,aquatic plants,and water depth had significant(P<0.05)effects on fish communities in the traditional capture method,suggesting that eDNA results are insensitive to the effects of environmental factors.Our results illustrate the effectiveness of eDNA in fish identification and the issues in quantification compared to traditional capture methods.Therefore,combining eDNA with traditional methods is a more effective method for analyzing eDNA metabarcoding,following which the protocols of both quantitative methods can be designed to explore the regularity of eDNA quantification.
基金supported by the National Natural Science Foundation of China(31972558)the Agricultural Improved Seed Project of Shandong Province,China(2020LZGC014)。
文摘Eukaryotic genomes are hierarchically packaged into cell nucleus,affecting gene regulation.The genome is organized into multiscale structural units,including chromosome territories,compartments,topologically associating domains(TADs),and DNA loops.The identification of these hierarchical structures has benefited from the development of experimental approaches,such as 3C-based methods(Hi-C,ChIA-PET,etc.),imaging tools(2D-FISH,3D-FISH,Cryo-FISH,etc.)and ligation-free methods(GAM,SPRITE,etc.).In recent two decades,numerous studies have shown that the 3D organization of genome plays essential roles in multiple cellular processes via various mechanisms,such as regulating enhancer activity and promoter-enhancer interactions.However,there are relatively few studies about the 3D genome in livestock species.Therefore,studies for exploring the function of 3D genomes in livestock are urgently needed to provide a more comprehensive understanding of potential relationships between the genome and production traits.In this review,we summarize the recent advances of 3D genomics and its biological functions in human and mouse studies,drawing inspiration to explore the 3D genomics of livestock species.We then mainly focus on the biological functions of 3D genome organization in muscle development and its implications in animal breeding.
基金supported by the National Natural Science Foundation of China(U21A20166)in part by the Science and Technology Development Foundation of Jilin Province (20230508095RC)+1 种基金in part by the Development and Reform Commission Foundation of Jilin Province (2023C034-3)in part by the Exploration Foundation of State Key Laboratory of Automotive Simulation and Control。
文摘Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.