The selective aerobic oxidation of benzyl alcohol to benzaldehyde has attracted considerable attention because benzaldehyde is a high value-added product. The rate of this typical gas–liquid reaction is significantly...The selective aerobic oxidation of benzyl alcohol to benzaldehyde has attracted considerable attention because benzaldehyde is a high value-added product. The rate of this typical gas–liquid reaction is significantly affected by mass transfer. In this study, CoTPP-mediated(CoTPP: cobalt(II) mesotetraphenylporphyrin) selective benzyl alcohol oxidation with oxygen was conducted in a membrane microchannel(MMC) reactor and a bubble column(BC) reactor, respectively. We observed that 83% benzyl alcohol was converted within 6.5 min in the MMC reactor, but only less than 10% benzyl alcohol was converted in the BC reactor. Hydrodynamic characteristics and gas–liquid mass transfer performances were compared for the MMC and BC reactors. The MMC reactor was assumed to be a plug flow reactor,and the dimensionless variance was 0.29. Compared to the BC reactor, the gas–liquid mass transfer was intensified significantly in MMC reactor. It could be ascribed to the high gas holdup(2.9 times higher than that of BC reactor), liquid film mass transfer coefficient(8.2 times higher than that of BC reactor), and mass transfer coefficient per unit interfacial area(3.8 times higher than that of BC reactor). Moreover,the Hatta number for the MMC reactor reached up to 0.61, which was about 15 times higher than that of the BC reactor. The computational fluid dynamics calculations for mass fractions in both liquid and gas phases were consistent with the experimental data.展开更多
A metal-free N-hydroxyphthalimide/hexagonal boron nitride(NHPI/h-BN)catalytic system was developed for deep oxidative desulfurization(ODS)of fuel oils.Detailed experiments find that the heterogenization process of loa...A metal-free N-hydroxyphthalimide/hexagonal boron nitride(NHPI/h-BN)catalytic system was developed for deep oxidative desulfurization(ODS)of fuel oils.Detailed experiments find that the heterogenization process of loading NHPI on h-BN not only benefits to the dispersion and utilization of NHPI,but also can significantly promote the catalytic performance.By employing NHPI/h-BN as the catalyst,azodiisobutyronitrile(AIBN)as the metal-free initiator,a 95%conversion of dibenzothiophene(DBT)can be acquired under the reaction conditions of 120°C and atmospheric pressure with molecular oxygen(O_(2))as oxidant.Moreover,the heterogenization is convenient for the regeneration of the catalyst with>94%DBT conversion after being recycled seven times.Characterizations illustrate that the promoted catalytic activity along with the regenerability originate from the interactions between NHPI and h-BN.The catalytic mechanism study shows that molecular oxygen is readily activated by the NHPI/h-BN to form a superoxide radical(O_(2)^(·-)),which oxidize DBT to DBTO2 for desulfurization.展开更多
Propylene molecule owns two active sites,the direct epoxidation of propylene by dioxygen is still a challenge due to the limitation of selectivity.In this work,the direct liquid-phase propylene aerobic epoxidation pro...Propylene molecule owns two active sites,the direct epoxidation of propylene by dioxygen is still a challenge due to the limitation of selectivity.In this work,the direct liquid-phase propylene aerobic epoxidation protocol by chloride manganese meso-tetraphenylporphyrin(MnTPPCl)was developed.The conversion of propylene was 12.7%,and the selectivity towards PO(propylene oxide)reached up to 80.5%.The formation of PO was attributed to the mechanism via high-valent Mn species,which was confirmed by means of in situ UV–vis spectrum.展开更多
A series of basic nitrogen doped carbon hollow spheres(p-N-C) catalysts derived from waste tires were prepared by a green, facile and environmental “leavening” strategy for the catalytic oxidation of pentanethiol. C...A series of basic nitrogen doped carbon hollow spheres(p-N-C) catalysts derived from waste tires were prepared by a green, facile and environmental “leavening” strategy for the catalytic oxidation of pentanethiol. Compared to pristine carbon, the p-N-C has a higher surface curvature conducive to the enrichment of substrates, leading to an excellent catalytic performance. This increased surface curvature of p-N-C was fabricated on the synergistic effect of two foaming agents((NH4)2 C2 O4 and NaHCO3), and the released gas also endows the spherical shell of p-N-C with a hierarchical porous structure, promoting the accessibility of active sites with pentanethiol. Pyridine-like and pyrrolic-like nitrogen atoms were investigated as reactive sites on the p-N-C to accelerate the electron transfer from sulfur to active surface oxygen and enhance the adsorption/oxidation process. As a result, the optimal p-N-C catalyst exhibits superior adsorption and oxidation performance(99.9%) of pentanethiol, outperforming the “unleavened”catalyst(20.8%). This work offers a new avenue for the fabrication of highly efficient materials for the desulfurization of fuel.展开更多
Selective hydrogenation of C=C and C=O bonds in cinnamaldehyde(CAL)to produce desired products is a challenging task due to the complex conjugate system of the two unsaturated functional groups.In this study,a simple ...Selective hydrogenation of C=C and C=O bonds in cinnamaldehyde(CAL)to produce desired products is a challenging task due to the complex conjugate system of the two unsaturated functional groups.In this study,a simple ball milling method is presented for synthesizing Pt-based single-atom alloy catalysts(SAAs)that can function as a control switch for the selective hydrogenation of CAL into highly valuable products.展开更多
Selective oxidation of alcohols to corresponding carbonyl compounds is one of the most important processes both in academic and application research.As a kind of biomimetic catalyst,metalloporphyrins-catalyzed aerobic...Selective oxidation of alcohols to corresponding carbonyl compounds is one of the most important processes both in academic and application research.As a kind of biomimetic catalyst,metalloporphyrins-catalyzed aerobic oxidation of alcohols with aldehyde as hydrogen donator is gathering much attention.However,using olefins as another kind hydrogen donator for aerobic oxidation of alcohols has not been reported.In this study,a system comprising managenese porphyrin and cyclohexene for biomimetic aerobic oxidation of alcohols to carbonyl compounds was developed.The catalytic system exhibited excellent catalytic performance and selectivity towards the corresponding products for most primary and secondary alcohols under mild conditions.Based on the results obtained from experiments as well as in situ EPR(electron paramagnetic resonance)and UV-vis spectroscopy,the role of cvclohexene was demonstrated.展开更多
In order to investigate the distribution of rare earth elements (REEs) in the natural hyperaccumulator fern Dicranopteris dichotoma Bernh. and to characterize this plant photosynthetically, concentrations of REEs in...In order to investigate the distribution of rare earth elements (REEs) in the natural hyperaccumulator fern Dicranopteris dichotoma Bernh. and to characterize this plant photosynthetically, concentrations of REEs in D. dichotoma from mines mining heavy and light REEs (HREEs and LREEs, respectively), as well as in D. dichotoma from an area in which no mining occurred, in southern Jiangxi Province were determined using inductively coupled plasma-mass spectrometry. The REE concentrations in the lamina of D. dichotoma were in the order LREEs mine 〉 HREEs mine 〉 non-mining area. The maximum REE content in the lamina of D. dichotoma from the LREE mine was approximately 2 648 mg/kg dry weight. The photosynthetic activity of D. dichotoma from areas of HREE and LREE mines was improved by the presence of high concentrations of REEs in the lamina compared with D. dichotoma from the non-mining area. However, this enhancement varied according to the concentrations of the REEs, as well as their type. In addition, 77K fluorescence, electron transport rate, and chlorophyll-protein complex studies showed that the enhancement of the photosynthetic activity of D. dichotoma from HREE mines was mainly due to an increase in the chlorophyll-protein complex of the reaction center of photosystem (PS) Ⅰ, whereas the enhancement observed in D. dichotoma from LREE mines was due to an increase in the internal antennae chlorophyll-protein complex of PS Ⅱ and greater light energy distribution to the light-harvesting chlorophyll-protein complex of PS Ⅱ.展开更多
The development of catalytic aerobic epoxidation by numerous metal complexes in the presence of aldehyde as a sacrificial reductant(Mukaiyama epoxidation)has been reported,however,comprehensive examination of oxygen a...The development of catalytic aerobic epoxidation by numerous metal complexes in the presence of aldehyde as a sacrificial reductant(Mukaiyama epoxidation)has been reported,however,comprehensive examination of oxygen atom transfer mechanism involving free radical and highly reactive intermediates has yet to be presented.Herein,meso-tetrakis(pentafluorophenyl)porphyrinatooxidovanadium(Ⅳ)(VOTPFPP)was prepared and proved to be efficient toward aerobic olefin epoxidation in the presence of isobutyraldehyde.In situ electron paramagnetic resonance spectroscopy(in situ EPR)showed the generation,transfer pathways and ascription of free radicals in the epoxidation.According to the spectral and computational studies,the side-on vanadium-peroxo complexes are considered as the active intermediate species in the reaction process.In the cyclohexene epoxidation catalyzed by VOTPFPP,the kinetic isotope effect value of 1.0 was obtained,indicating that epoxidation occurred via oxygen atom transfer mechanism.The mechanism was further elucidated using isotopically labeled dioxygen experiments and density functional theory(DFT)calculations.展开更多
Nitrogen-containing compounds are ubiquitously found in the fields of organic chemistry,pharmaceuticals,agrochemicals,medicinal chemistry and functional materials.The C-H bond amination reaction is one of the most str...Nitrogen-containing compounds are ubiquitously found in the fields of organic chemistry,pharmaceuticals,agrochemicals,medicinal chemistry and functional materials.The C-H bond amination reaction is one of the most straightforward protocols in the CN bond formation,showing"step"and"atomic"economy.As a catalyst for C-H amination reaction,copper exhibits its unique catalytic properties due to easily accessible oxidation states.The research progress of copper-catalyzed C-H amination in recent years is summarized.At the same time,reaction mechanisms are also briefly described in representative aminations to provide insights for the development prospects of highly practical and more environmentally benignprocesses.展开更多
The direct epoxidation of propylene by O_(2) is a significant and challenging topic. The key factor for this homogeneous aerobic epoxidation is the activation of molecular oxygen under mild conditions. In this work,th...The direct epoxidation of propylene by O_(2) is a significant and challenging topic. The key factor for this homogeneous aerobic epoxidation is the activation of molecular oxygen under mild conditions. In this work,the aerobic epoxidation of propylene catalyzed by manganese porphyrins was achieved in the presence of isoprene. Isoprene contains an allyl methyl group, and the α-H can be easily removed to achieve the activation of molecular oxygen. The conversion of propylene was 38% and the selectivity toward propylene oxide(PO) was up to 87%. The role of isoprene was demonstrated, and a plausible mechanism was proposed. The protocol reported herein is expected to provide a strategy for the simultaneous preparation of propylene oxide and isoprene monoxide.展开更多
Substrate specificity is a hallmark of enzymatic catalysis.In this work,the biomimetic catalytic oxidation of styrene and cyclohexanone by iron(III)porphyrins and molecular oxygen was carried out,and remarkable differ...Substrate specificity is a hallmark of enzymatic catalysis.In this work,the biomimetic catalytic oxidation of styrene and cyclohexanone by iron(III)porphyrins and molecular oxygen was carried out,and remarkable differences in efficiency were observed.The specificity of the substrates for biomimetic catalytic oxidation was investigated by kinetics and mechanistic studies.Kinetics studies revealed that the oxidation of styrene followed Michaelis-Menten kinetics with KM=8.99 mol L^(-1),but the oxidation of cyclohexanone followed first-order kinetics with kobs=1.46×10^(-4) s^(-1),indicating that the styrene epoxidation by metalloporphyrins exhibited characteristics of enzyme-like catalysis,while the oxidation of cyclohexanone was in agreement with the general rules of chemical catalysis.Different catalytic mechanisms for the two substrates were discussed by operando electron paramagnetic resonance spectroscopy,operando UV-vis spectroscopy,and KI/starch experiments.Substrate specificity was concluded to be attributed to the stability of high-valence species and oxygen transfer rate.展开更多
基金financially supported by the National Key Research and Development Program of China (2020YFA0210900)the National Natural Science Foundation of China (21938001 and 21878344)+1 种基金Guangdong Provincial Key Research and Development Programme (2019B110206002)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01C102)。
文摘The selective aerobic oxidation of benzyl alcohol to benzaldehyde has attracted considerable attention because benzaldehyde is a high value-added product. The rate of this typical gas–liquid reaction is significantly affected by mass transfer. In this study, CoTPP-mediated(CoTPP: cobalt(II) mesotetraphenylporphyrin) selective benzyl alcohol oxidation with oxygen was conducted in a membrane microchannel(MMC) reactor and a bubble column(BC) reactor, respectively. We observed that 83% benzyl alcohol was converted within 6.5 min in the MMC reactor, but only less than 10% benzyl alcohol was converted in the BC reactor. Hydrodynamic characteristics and gas–liquid mass transfer performances were compared for the MMC and BC reactors. The MMC reactor was assumed to be a plug flow reactor,and the dimensionless variance was 0.29. Compared to the BC reactor, the gas–liquid mass transfer was intensified significantly in MMC reactor. It could be ascribed to the high gas holdup(2.9 times higher than that of BC reactor), liquid film mass transfer coefficient(8.2 times higher than that of BC reactor), and mass transfer coefficient per unit interfacial area(3.8 times higher than that of BC reactor). Moreover,the Hatta number for the MMC reactor reached up to 0.61, which was about 15 times higher than that of the BC reactor. The computational fluid dynamics calculations for mass fractions in both liquid and gas phases were consistent with the experimental data.
基金the financial support from the National Key R&D Program of China(No.2017YFB0306504)National Natural Science Foundation of China(No.22008094,22178154 and 21878133)+2 种基金Chinese Postdoctoral Science Foundation(No.2019M651743,2020M671364 and 2020M673039)Natural Science Foundation of Jiangsu Province(No.BK20190852)Natural Science Foundation for Jiangsu Colleges and Universities(No.19KJB530005)
文摘A metal-free N-hydroxyphthalimide/hexagonal boron nitride(NHPI/h-BN)catalytic system was developed for deep oxidative desulfurization(ODS)of fuel oils.Detailed experiments find that the heterogenization process of loading NHPI on h-BN not only benefits to the dispersion and utilization of NHPI,but also can significantly promote the catalytic performance.By employing NHPI/h-BN as the catalyst,azodiisobutyronitrile(AIBN)as the metal-free initiator,a 95%conversion of dibenzothiophene(DBT)can be acquired under the reaction conditions of 120°C and atmospheric pressure with molecular oxygen(O_(2))as oxidant.Moreover,the heterogenization is convenient for the regeneration of the catalyst with>94%DBT conversion after being recycled seven times.Characterizations illustrate that the promoted catalytic activity along with the regenerability originate from the interactions between NHPI and h-BN.The catalytic mechanism study shows that molecular oxygen is readily activated by the NHPI/h-BN to form a superoxide radical(O_(2)^(·-)),which oxidize DBT to DBTO2 for desulfurization.
基金financially supported by the National Key Research and Development Program of China (2020YFA0210900)the National Natural Science Foundation of China (No. 21938001 and 21878344)Research and Innovation Team Construction Project of Guangdong University of Petrochemical Technology
文摘Propylene molecule owns two active sites,the direct epoxidation of propylene by dioxygen is still a challenge due to the limitation of selectivity.In this work,the direct liquid-phase propylene aerobic epoxidation protocol by chloride manganese meso-tetraphenylporphyrin(MnTPPCl)was developed.The conversion of propylene was 12.7%,and the selectivity towards PO(propylene oxide)reached up to 80.5%.The formation of PO was attributed to the mechanism via high-valent Mn species,which was confirmed by means of in situ UV–vis spectrum.
基金financially supported by the National Natural Science Foundation of China (Nos. 21722604, 21878133, and22002050)China Postdoctoral Science Foundation (No.2020M671365)Postgraduate Research&Practice Innovation Program of Jiangsu Province (No. KYCX20_3039)。
文摘A series of basic nitrogen doped carbon hollow spheres(p-N-C) catalysts derived from waste tires were prepared by a green, facile and environmental “leavening” strategy for the catalytic oxidation of pentanethiol. Compared to pristine carbon, the p-N-C has a higher surface curvature conducive to the enrichment of substrates, leading to an excellent catalytic performance. This increased surface curvature of p-N-C was fabricated on the synergistic effect of two foaming agents((NH4)2 C2 O4 and NaHCO3), and the released gas also endows the spherical shell of p-N-C with a hierarchical porous structure, promoting the accessibility of active sites with pentanethiol. Pyridine-like and pyrrolic-like nitrogen atoms were investigated as reactive sites on the p-N-C to accelerate the electron transfer from sulfur to active surface oxygen and enhance the adsorption/oxidation process. As a result, the optimal p-N-C catalyst exhibits superior adsorption and oxidation performance(99.9%) of pentanethiol, outperforming the “unleavened”catalyst(20.8%). This work offers a new avenue for the fabrication of highly efficient materials for the desulfurization of fuel.
基金financially supported by the National key Research and Development Program Nanotechnology Specific Project(No.2020YFA0210900)the Science and Technology Key Project of Guangdong Province,China(No.2020B010188002)+6 种基金Guangdong Natural Science Funds for Distinguished Young Scholar(No.2022B1515020035)Guangdong Provincial Key R&D Programme(No.2019B110206002)the National Natural Science Foundation of China(Nos.22078371,21938001 and 21961160741)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT0IC102)the NSF of Guangdong Province(No.2020A1515011141)the Science and Technology Project of Guangzhou City,China(No.202102020461)Special funding for"Guangxi Bagui Scholars"。
文摘Selective hydrogenation of C=C and C=O bonds in cinnamaldehyde(CAL)to produce desired products is a challenging task due to the complex conjugate system of the two unsaturated functional groups.In this study,a simple ball milling method is presented for synthesizing Pt-based single-atom alloy catalysts(SAAs)that can function as a control switch for the selective hydrogenation of CAL into highly valuable products.
基金supported by the National Key Re-search and Development Program of China(No.2016YFA0602900)the National Natural Science Foundation of China(Nos.21425627,21576302,21878344 and 21938001)+2 种基金the National Natural Science Foundation of China-SINOPEC Joint Fund(No.U1663220)the Guangdong Provincial Key R&D Programmer(No.20198110206002)the Local Innovative and Research Teams Project of Guang-dong Pearl River Talents Program(No.2017BT01C102).
文摘Selective oxidation of alcohols to corresponding carbonyl compounds is one of the most important processes both in academic and application research.As a kind of biomimetic catalyst,metalloporphyrins-catalyzed aerobic oxidation of alcohols with aldehyde as hydrogen donator is gathering much attention.However,using olefins as another kind hydrogen donator for aerobic oxidation of alcohols has not been reported.In this study,a system comprising managenese porphyrin and cyclohexene for biomimetic aerobic oxidation of alcohols to carbonyl compounds was developed.The catalytic system exhibited excellent catalytic performance and selectivity towards the corresponding products for most primary and secondary alcohols under mild conditions.Based on the results obtained from experiments as well as in situ EPR(electron paramagnetic resonance)and UV-vis spectroscopy,the role of cvclohexene was demonstrated.
文摘In order to investigate the distribution of rare earth elements (REEs) in the natural hyperaccumulator fern Dicranopteris dichotoma Bernh. and to characterize this plant photosynthetically, concentrations of REEs in D. dichotoma from mines mining heavy and light REEs (HREEs and LREEs, respectively), as well as in D. dichotoma from an area in which no mining occurred, in southern Jiangxi Province were determined using inductively coupled plasma-mass spectrometry. The REE concentrations in the lamina of D. dichotoma were in the order LREEs mine 〉 HREEs mine 〉 non-mining area. The maximum REE content in the lamina of D. dichotoma from the LREE mine was approximately 2 648 mg/kg dry weight. The photosynthetic activity of D. dichotoma from areas of HREE and LREE mines was improved by the presence of high concentrations of REEs in the lamina compared with D. dichotoma from the non-mining area. However, this enhancement varied according to the concentrations of the REEs, as well as their type. In addition, 77K fluorescence, electron transport rate, and chlorophyll-protein complex studies showed that the enhancement of the photosynthetic activity of D. dichotoma from HREE mines was mainly due to an increase in the chlorophyll-protein complex of the reaction center of photosystem (PS) Ⅰ, whereas the enhancement observed in D. dichotoma from LREE mines was due to an increase in the internal antennae chlorophyll-protein complex of PS Ⅱ and greater light energy distribution to the light-harvesting chlorophyll-protein complex of PS Ⅱ.
基金financially supported by the National Key Research and Development Program of China(2020YFA0210900)the National Natural Science Foundation of China(Nos.21938001,22078072,21961160741 and 21878344)+2 种基金the Guangdong Provincial Key R&D Programme(2019B110206002)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01C102)the Research and Innovation Team Construction Project of Guangdong University of Petrochemical Technology(2019rc049).
文摘The development of catalytic aerobic epoxidation by numerous metal complexes in the presence of aldehyde as a sacrificial reductant(Mukaiyama epoxidation)has been reported,however,comprehensive examination of oxygen atom transfer mechanism involving free radical and highly reactive intermediates has yet to be presented.Herein,meso-tetrakis(pentafluorophenyl)porphyrinatooxidovanadium(Ⅳ)(VOTPFPP)was prepared and proved to be efficient toward aerobic olefin epoxidation in the presence of isobutyraldehyde.In situ electron paramagnetic resonance spectroscopy(in situ EPR)showed the generation,transfer pathways and ascription of free radicals in the epoxidation.According to the spectral and computational studies,the side-on vanadium-peroxo complexes are considered as the active intermediate species in the reaction process.In the cyclohexene epoxidation catalyzed by VOTPFPP,the kinetic isotope effect value of 1.0 was obtained,indicating that epoxidation occurred via oxygen atom transfer mechanism.The mechanism was further elucidated using isotopically labeled dioxygen experiments and density functional theory(DFT)calculations.
基金We are grateful for financial support from the National Natural Science Foundation of China(Nos.21938001,21961160741,22078072)the Special Innovation Project of Guangdong Provincial Department of Education(No.2021KTSCX082)+2 种基金the Science and Technology Plan Project of Maoming City(Nos.2020581,2021009,2021012)the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515110346)the Scientific Research Foundation of Guangdong University of Petrochemical Technology(Nos.517152,2019rc053).
文摘Nitrogen-containing compounds are ubiquitously found in the fields of organic chemistry,pharmaceuticals,agrochemicals,medicinal chemistry and functional materials.The C-H bond amination reaction is one of the most straightforward protocols in the CN bond formation,showing"step"and"atomic"economy.As a catalyst for C-H amination reaction,copper exhibits its unique catalytic properties due to easily accessible oxidation states.The research progress of copper-catalyzed C-H amination in recent years is summarized.At the same time,reaction mechanisms are also briefly described in representative aminations to provide insights for the development prospects of highly practical and more environmentally benignprocesses.
基金financially supported by the National Key Research and Development Program of China(No.2020YFA0210900)the National Natural Science Foundation of China(Nos.21938001 and 21878344)+1 种基金Guangdong Provincial Key R&D Programme(No.2019B110206002)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01C102)。
文摘The direct epoxidation of propylene by O_(2) is a significant and challenging topic. The key factor for this homogeneous aerobic epoxidation is the activation of molecular oxygen under mild conditions. In this work,the aerobic epoxidation of propylene catalyzed by manganese porphyrins was achieved in the presence of isoprene. Isoprene contains an allyl methyl group, and the α-H can be easily removed to achieve the activation of molecular oxygen. The conversion of propylene was 38% and the selectivity toward propylene oxide(PO) was up to 87%. The role of isoprene was demonstrated, and a plausible mechanism was proposed. The protocol reported herein is expected to provide a strategy for the simultaneous preparation of propylene oxide and isoprene monoxide.
基金support from the National Natural Science Foundation of China(No.21938001 and 21878344)the National Key Research and Development Program of China(2016YFA0602900)+3 种基金the National Natural Science Foundation of ChinaSINOPEC Joint Fund(No.U1663220)Guangdong Provincial Key R&D Programme(2019B110206002)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01C102)Research and Innovation Team Construction Project of Guangdong University of Petrochemical Technology.
文摘Substrate specificity is a hallmark of enzymatic catalysis.In this work,the biomimetic catalytic oxidation of styrene and cyclohexanone by iron(III)porphyrins and molecular oxygen was carried out,and remarkable differences in efficiency were observed.The specificity of the substrates for biomimetic catalytic oxidation was investigated by kinetics and mechanistic studies.Kinetics studies revealed that the oxidation of styrene followed Michaelis-Menten kinetics with KM=8.99 mol L^(-1),but the oxidation of cyclohexanone followed first-order kinetics with kobs=1.46×10^(-4) s^(-1),indicating that the styrene epoxidation by metalloporphyrins exhibited characteristics of enzyme-like catalysis,while the oxidation of cyclohexanone was in agreement with the general rules of chemical catalysis.Different catalytic mechanisms for the two substrates were discussed by operando electron paramagnetic resonance spectroscopy,operando UV-vis spectroscopy,and KI/starch experiments.Substrate specificity was concluded to be attributed to the stability of high-valence species and oxygen transfer rate.