The potential for reducing greenhouse gas(GHG)emissions and energy consumption in wastewater treatment can be realized through intelligent control,with machine learning(ML)and multimodality emerging as a promising sol...The potential for reducing greenhouse gas(GHG)emissions and energy consumption in wastewater treatment can be realized through intelligent control,with machine learning(ML)and multimodality emerging as a promising solution.Here,we introduce an ML technique based on multimodal strategies,focusing specifically on intelligent aeration control in wastewater treatment plants(WWTPs).The generalization of the multimodal strategy is demonstrated on eight ML models.The results demonstrate that this multimodal strategy significantly enhances model indicators for ML in environmental science and the efficiency of aeration control,exhibiting exceptional performance and interpretability.Integrating random forest with visual models achieves the highest accuracy in forecasting aeration quantity in multimodal models,with a mean absolute percentage error of 4.4%and a coefficient of determination of 0.948.Practical testing in a full-scale plant reveals that the multimodal model can reduce operation costs by 19.8%compared to traditional fuzzy control methods.The potential application of these strategies in critical water science domains is discussed.To foster accessibility and promote widespread adoption,the multimodal ML models are freely available on GitHub,thereby eliminating technical barriers and encouraging the application of artificial intelligence in urban wastewater treatment.展开更多
This concise review summarizes recent advancements in theoretical studies of vortex quantum droplets(VQDs)in matter-wave fields.These are robust self-trapped vortical states in two-and three-dimensional(2D and 3D)Bose...This concise review summarizes recent advancements in theoretical studies of vortex quantum droplets(VQDs)in matter-wave fields.These are robust self-trapped vortical states in two-and three-dimensional(2D and 3D)Bose–Einstein condensates(BECs)with intrinsic nonlinearity.Stability of VQDs is provided by additional nonlinearities resulting from quantum fluctuations around mean-field states,often referred to as the Lee–Huang–Yang(LHY)corrections.The basic models are presented,with emphasis on the interplay between the mean-field nonlinearity,LHY correction,and spatial dimension,which determines the structure and stability of VQDs.We embark by delineating fundamental properties of VQDs in the 3D free space,followed by consideration of their counterparts in the 2D setting.Additionally,we address stabilization of matter-wave VQDs by optical potentials.Finally,we summarize results for the study of VQDs in the single-component BEC of atoms carrying magnetic moments.In that case,the anisotropy of the long-range dipole-dipole interactions endows the VQDs with unique characteristics.The results produced by the theoretical studies in this area directly propose experiments for the observation of novel physical effects in the realm of quantum matter,and suggest potential applications to the design of new schemes for processing classical and quantum information.展开更多
BACKGROUND Few studies have investigated the expression of GLI1 and PTTG1 in patients undergoing radical surgery for colorectal carcinoma(CRC)and their association with lymph node metastasis(LNM).Therefore,more releva...BACKGROUND Few studies have investigated the expression of GLI1 and PTTG1 in patients undergoing radical surgery for colorectal carcinoma(CRC)and their association with lymph node metastasis(LNM).Therefore,more relevant studies and analyses need to be conducted.AIM To explore GLI1 and PTTG1 expression in patients undergoing radical surgery for CRC and their correlation with LNM.METHODS This study selected 103 patients with CRC admitted to our hospital between April 2020 and April 2023.Sample specimens of CRC and adjacent tissues were collected to determine the positive rates and expression levels of GLI1 and PTTG1.The correlation of the two genes with patients’clinicopathological data(e.g.,LNM)was explored,and differences in GLI1 and PTTG1 expression between patients with LNM and those without were analyzed.Receiver operating characteristic(ROC)curves were plotted to evaluate the predictive potential of the two genes for LNM in patients with CRC.RESULTS Significantly higher positive rates and expression levels of GLI1 and PTTG1 wereobserved in CRC tissue samples compared with adjacent tissues.GLI1 and PTTG1 were strongly linked to LNM in patients undergoing radical surgery for CRC,with higher GLI1 and PTTG1 levels found in patients with LNM than in those without.The areas under the ROC curve of GLI1 and PTTG1 in assessing LNM in patients with CRC were 0.824 and 0.811,respectively.CONCLUSION GLI1 and PTTG1 expression was upregulated in patients undergoing radical surgery for CRC and are significantly related to LNM in these patients.Moreover,high GLI1 and PTTG1 expression can indicate LNM in patients with CRC undergoing radical surgery.The expression of both genes has certain diagnostic and therapeutic significance.展开更多
We theoretically study the existence and stability of optical solitons in saturable nonlinearity with a two-dimensional parity–time(PT) symmetric Bessel potential.Besides the fundamental solitons,a novel type of dr...We theoretically study the existence and stability of optical solitons in saturable nonlinearity with a two-dimensional parity–time(PT) symmetric Bessel potential.Besides the fundamental solitons,a novel type of dressed soliton,whose intensity looks like a ring dressed on an intensity hump,are presented.It is found that both the fundamental solitons and dressed solitons can exist when the propagation constant is beyond a certain critical value.The propagation stability is investigated with a linear stability analysis corroborated by a beam propagation method.All the fundamental solitons are stable,while dressed solitons are unstable for low values of saturable parameter.As the value of saturable parameter increases,the dressed solitons tend to be stable at high powers.展开更多
Bioelectrochemical systems(BESs)have been studied extensively during the past decades owing primarily to their versatility and potential in addressing the water-energy-resource nexus.In stark contrast to the significa...Bioelectrochemical systems(BESs)have been studied extensively during the past decades owing primarily to their versatility and potential in addressing the water-energy-resource nexus.In stark contrast to the significant advancements that have been made in developing innovative processes for pollution control and bioresource/bioenergy recovery,minimal progress has been achieved in demonstrating the feasibility of BESs in scaled-up applications.This lack of scaled-up demonstration could be ascribed to the absence of suitable electrode modules(EMs)engineered for large-scale application.In this study,we report a scalable composite-engineered EM(total volume of 1 m^(3)),fabricated using graphite-coated stainless steel and carbon felt,that allows integrating BESs into mainstream wastewater treatment technologies.The cost-effectiveness and easy scalability of this EM provides a viable and clear path to facilitate the transition between the success of the lab studies and applications of BESs to solve multiple pressing environmental issues at full-scale.展开更多
We study fundamental modes trapped in a rotating ring with a saturated nonlinear double-well potential. This model, which is based on the nonlinear Schrodinger equation, can be constructed in a twisted waveguide pipe ...We study fundamental modes trapped in a rotating ring with a saturated nonlinear double-well potential. This model, which is based on the nonlinear Schrodinger equation, can be constructed in a twisted waveguide pipe in terms of light propagation, or in a Bose-Einstein condensate (BEC) loaded into a toroidal trap under a combination of a rotating π-out-of-phase linear potential and nonlinear pseudopotential induced by means of a rotating optical field and the Feshbach resonance. Three types of fundamental modes are identified in this model, one symmetric and the other two asymmetric. The shape and stability of the modes and the transitions between different modes are investigated in the first rotational Brillouin zone. A similar model used a Kerr medium to build its nonlinear potential, but we replace it with a saturated nonlinear medium. The model exhibits not only symmetry breaking, but also symmetry recovery. A specific type of unstable asymmetric mode is also found, and the evolution of the unstable asymmetric mode features Josephson oscillation between two linear wells. By considering the model as a configuration of a BEC system, the ground state mode is identified among these three types, which characterize a specific distribution of the BEC atoms around the trap.展开更多
In this study, a novel scaled-up hybrid acidogenic bioreactor(HAB) was designed and adopted to evaluate the performance of azo dye(acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogeni...In this study, a novel scaled-up hybrid acidogenic bioreactor(HAB) was designed and adopted to evaluate the performance of azo dye(acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogenic bioreactor coupled with a biocatalyzed electrolysis module. The effects of hydraulic retention time(HRT) and ARG loading rate on the performance of HAB were investigated. In addition, the influent was switched from synthetic wastewater to domestic wastewater to examine the key parameters for the application of HAB. The results showed that the introduction of the biocatalyzed electrolysis module could enhance anoxic decolorization and COD(chemical oxygen demand) removal. The combined process of HAB-CASS presented superior performance compared to a control system without biocatalyzed electrolysis(AB-CASS). When the influent was switched to domestic wastewater, with an environment having more balanced nutrients and diverse organic matters, the ARG, COD and nitrogen removal efficiencies of HAB-CASS were further improved, reaching 73.3% ± 2.5%, 86.2% ± 3.8% and 93.5% ± 1.6% at HRT of 6 hr, respectively, which were much higher than those of AB-CASS(61.1% ± 4.7%,75.4% ± 5.0% and 82.1% ± 2.1%, respectively). Moreover, larger TCV/TV(total cathode volume/total volume) for HAB led to higher current and ARG removal. The ARG removal efficiency and current at TCV/TV of 0.15 were 39.2% ± 3.7% and 28.30 ± 1.48 mA,respectively. They were significantly increased to 62.1% ± 2.0% and 34.55 ± 0.83 mA at TCV/TV of 0.25. These results show that HAB system could be used to effectively treat real wastewater.展开更多
基金the financial support by the National Natural Science Foundation of China(52230004 and 52293445)the Key Research and Development Project of Shandong Province(2020CXGC011202-005)the Shenzhen Science and Technology Program(KCXFZ20211020163404007 and KQTD20190929172630447).
文摘The potential for reducing greenhouse gas(GHG)emissions and energy consumption in wastewater treatment can be realized through intelligent control,with machine learning(ML)and multimodality emerging as a promising solution.Here,we introduce an ML technique based on multimodal strategies,focusing specifically on intelligent aeration control in wastewater treatment plants(WWTPs).The generalization of the multimodal strategy is demonstrated on eight ML models.The results demonstrate that this multimodal strategy significantly enhances model indicators for ML in environmental science and the efficiency of aeration control,exhibiting exceptional performance and interpretability.Integrating random forest with visual models achieves the highest accuracy in forecasting aeration quantity in multimodal models,with a mean absolute percentage error of 4.4%and a coefficient of determination of 0.948.Practical testing in a full-scale plant reveals that the multimodal model can reduce operation costs by 19.8%compared to traditional fuzzy control methods.The potential application of these strategies in critical water science domains is discussed.To foster accessibility and promote widespread adoption,the multimodal ML models are freely available on GitHub,thereby eliminating technical barriers and encouraging the application of artificial intelligence in urban wastewater treatment.
基金supported by Dongguan Science and Technology of Social Development Program (Grant No. 20231800940532)Songshan Lake Sci-Tech Commissioner Program (Grant No. 20234373–01KCJ-G)supported, in part, by the Israel Science Foundation (Grant No. 1695/22)
文摘This concise review summarizes recent advancements in theoretical studies of vortex quantum droplets(VQDs)in matter-wave fields.These are robust self-trapped vortical states in two-and three-dimensional(2D and 3D)Bose–Einstein condensates(BECs)with intrinsic nonlinearity.Stability of VQDs is provided by additional nonlinearities resulting from quantum fluctuations around mean-field states,often referred to as the Lee–Huang–Yang(LHY)corrections.The basic models are presented,with emphasis on the interplay between the mean-field nonlinearity,LHY correction,and spatial dimension,which determines the structure and stability of VQDs.We embark by delineating fundamental properties of VQDs in the 3D free space,followed by consideration of their counterparts in the 2D setting.Additionally,we address stabilization of matter-wave VQDs by optical potentials.Finally,we summarize results for the study of VQDs in the single-component BEC of atoms carrying magnetic moments.In that case,the anisotropy of the long-range dipole-dipole interactions endows the VQDs with unique characteristics.The results produced by the theoretical studies in this area directly propose experiments for the observation of novel physical effects in the realm of quantum matter,and suggest potential applications to the design of new schemes for processing classical and quantum information.
文摘BACKGROUND Few studies have investigated the expression of GLI1 and PTTG1 in patients undergoing radical surgery for colorectal carcinoma(CRC)and their association with lymph node metastasis(LNM).Therefore,more relevant studies and analyses need to be conducted.AIM To explore GLI1 and PTTG1 expression in patients undergoing radical surgery for CRC and their correlation with LNM.METHODS This study selected 103 patients with CRC admitted to our hospital between April 2020 and April 2023.Sample specimens of CRC and adjacent tissues were collected to determine the positive rates and expression levels of GLI1 and PTTG1.The correlation of the two genes with patients’clinicopathological data(e.g.,LNM)was explored,and differences in GLI1 and PTTG1 expression between patients with LNM and those without were analyzed.Receiver operating characteristic(ROC)curves were plotted to evaluate the predictive potential of the two genes for LNM in patients with CRC.RESULTS Significantly higher positive rates and expression levels of GLI1 and PTTG1 wereobserved in CRC tissue samples compared with adjacent tissues.GLI1 and PTTG1 were strongly linked to LNM in patients undergoing radical surgery for CRC,with higher GLI1 and PTTG1 levels found in patients with LNM than in those without.The areas under the ROC curve of GLI1 and PTTG1 in assessing LNM in patients with CRC were 0.824 and 0.811,respectively.CONCLUSION GLI1 and PTTG1 expression was upregulated in patients undergoing radical surgery for CRC and are significantly related to LNM in these patients.Moreover,high GLI1 and PTTG1 expression can indicate LNM in patients with CRC undergoing radical surgery.The expression of both genes has certain diagnostic and therapeutic significance.
基金Project supported by the National Natural Science Foundation of China(Grant No.61308019)the Guangdong Provincial Natural Science Foundation,China(Grant Nos.2015A030313650 and 2014A030310262)the Guangdong Provincial Science and Technology Planning Program,China(Grant No.2017A010102019)
文摘We theoretically study the existence and stability of optical solitons in saturable nonlinearity with a two-dimensional parity–time(PT) symmetric Bessel potential.Besides the fundamental solitons,a novel type of dressed soliton,whose intensity looks like a ring dressed on an intensity hump,are presented.It is found that both the fundamental solitons and dressed solitons can exist when the propagation constant is beyond a certain critical value.The propagation stability is investigated with a linear stability analysis corroborated by a beam propagation method.All the fundamental solitons are stable,while dressed solitons are unstable for low values of saturable parameter.As the value of saturable parameter increases,the dressed solitons tend to be stable at high powers.
基金financially supported by the NSFC-EU Environmental Biotechnology joint program(No.31861133001).
文摘Bioelectrochemical systems(BESs)have been studied extensively during the past decades owing primarily to their versatility and potential in addressing the water-energy-resource nexus.In stark contrast to the significant advancements that have been made in developing innovative processes for pollution control and bioresource/bioenergy recovery,minimal progress has been achieved in demonstrating the feasibility of BESs in scaled-up applications.This lack of scaled-up demonstration could be ascribed to the absence of suitable electrode modules(EMs)engineered for large-scale application.In this study,we report a scalable composite-engineered EM(total volume of 1 m^(3)),fabricated using graphite-coated stainless steel and carbon felt,that allows integrating BESs into mainstream wastewater treatment technologies.The cost-effectiveness and easy scalability of this EM provides a viable and clear path to facilitate the transition between the success of the lab studies and applications of BESs to solve multiple pressing environmental issues at full-scale.
基金Acknowledgements G. Chen appreciates the useful discussions with Yongyao Li (SCAU Univ.). This work was supported by the National Natural Science Foundation of China (Grant No. 61308019), Guangdong Natural Science Foundation (Grant No. 2015A030313650), and the Foundation for Distin- guished Young Talents in Higher Education of Guangdong (Grant No. Yq2013157).
文摘We study fundamental modes trapped in a rotating ring with a saturated nonlinear double-well potential. This model, which is based on the nonlinear Schrodinger equation, can be constructed in a twisted waveguide pipe in terms of light propagation, or in a Bose-Einstein condensate (BEC) loaded into a toroidal trap under a combination of a rotating π-out-of-phase linear potential and nonlinear pseudopotential induced by means of a rotating optical field and the Feshbach resonance. Three types of fundamental modes are identified in this model, one symmetric and the other two asymmetric. The shape and stability of the modes and the transitions between different modes are investigated in the first rotational Brillouin zone. A similar model used a Kerr medium to build its nonlinear potential, but we replace it with a saturated nonlinear medium. The model exhibits not only symmetry breaking, but also symmetry recovery. A specific type of unstable asymmetric mode is also found, and the evolution of the unstable asymmetric mode features Josephson oscillation between two linear wells. By considering the model as a configuration of a BEC system, the ground state mode is identified among these three types, which characterize a specific distribution of the BEC atoms around the trap.
基金financially supported by the Ministry of Environmental Protection of the People's Republic of China (Major Science and Technology Program for Water Pollution Control and Treatment) (No. 2014ZX07204-005)the National Natural Science Foundation of China (Nos. 51222812, 31370157, 21407164, 51508551)+2 种基金the China Postdoctoral Science Foundation (No. 2015M580140)the National Science Foundation for Distinguished Young Scholars (No. 51225802)Hundred Talents Program of the Chinese Academy of Sciences (No. 29BR2013001)
文摘In this study, a novel scaled-up hybrid acidogenic bioreactor(HAB) was designed and adopted to evaluate the performance of azo dye(acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogenic bioreactor coupled with a biocatalyzed electrolysis module. The effects of hydraulic retention time(HRT) and ARG loading rate on the performance of HAB were investigated. In addition, the influent was switched from synthetic wastewater to domestic wastewater to examine the key parameters for the application of HAB. The results showed that the introduction of the biocatalyzed electrolysis module could enhance anoxic decolorization and COD(chemical oxygen demand) removal. The combined process of HAB-CASS presented superior performance compared to a control system without biocatalyzed electrolysis(AB-CASS). When the influent was switched to domestic wastewater, with an environment having more balanced nutrients and diverse organic matters, the ARG, COD and nitrogen removal efficiencies of HAB-CASS were further improved, reaching 73.3% ± 2.5%, 86.2% ± 3.8% and 93.5% ± 1.6% at HRT of 6 hr, respectively, which were much higher than those of AB-CASS(61.1% ± 4.7%,75.4% ± 5.0% and 82.1% ± 2.1%, respectively). Moreover, larger TCV/TV(total cathode volume/total volume) for HAB led to higher current and ARG removal. The ARG removal efficiency and current at TCV/TV of 0.15 were 39.2% ± 3.7% and 28.30 ± 1.48 mA,respectively. They were significantly increased to 62.1% ± 2.0% and 34.55 ± 0.83 mA at TCV/TV of 0.25. These results show that HAB system could be used to effectively treat real wastewater.