Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al re...Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.展开更多
In energy-dispersive X-ray fluorescence spectroscopy,the estimation of the pulse amplitude determines the accuracy of the spectrum measurement.The error generated by the amplitude estimation of the pulse output distor...In energy-dispersive X-ray fluorescence spectroscopy,the estimation of the pulse amplitude determines the accuracy of the spectrum measurement.The error generated by the amplitude estimation of the pulse output distorted by the measurement system leads to false peaks in the measured spectrum.To eliminate these false peaks and achieve an accurate estimation of the distorted pulse amplitude,a composite neural network model is proposed,which embeds long and short-term memory(LSTM)into the UNet structure.The UNet network realizes the fusion of pulse sequence features and the LSTM model realizes pulse amplitude estimation.The model is trained using simulated pulse datasets with different amplitudes and distortion times.For the pulse height estimation,the average relative error of the trained model on the test set was approximately 0.64%,which is 27.37% lower than that of the traditional trapezoidal shaping algorithm.Offline processing of a standard iron source further validated the pulse height estimation performance of the UNet-LSTM model.After estimating the amplitude of the distorted pulses using the model,the false peak area was reduced by approximately 91% over the full spectrum and was corrected to the characteristic peak region of interest(ROI).The corrected peak area accounted for approximately 1.32%of the characteristic peak ROI area.The results indicate that the model can accurately estimate the height of distorted pulses and has substantial corrective effects on false peaks.展开更多
A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly p...A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaC12 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were inves- tigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaC12 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching tempera- ture of 80℃, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.展开更多
基金the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(NLK 2022-04)the Central Government Guidance Funds for Local Scientific and Technological Development,China(No.Guike,ZY22096024)+1 种基金the National Natural Science Foundation of China(12065003)Guangxi Key R&D Project(2023AB07029).
文摘Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.
基金supported by the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(No.NLK2022-05)the Central Government Guidance Funds for Local Scientific and Technological Development,China(No.Guike ZY22096024)+5 种基金the Sichuan Natural Science Youth Fund Project(No.2023NSFSC1366)Key R&D Projects of Sichuan Provincial Department of Science and Technology(No.2023YFG0287)the Open Research Fund of National Engineering Research Center for Agro-Ecological Big Data Analysis&Application,Anhui University(No.AE202209)the National Natural Science Youth Foundation of China(No.12305214)the Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province(No.2023FTSZ03)the Key Laboratory of Interior Layout optimization and Security,Institutions of Higher Education of Sichuan Province(No.2023SNKJ-01)。
文摘In energy-dispersive X-ray fluorescence spectroscopy,the estimation of the pulse amplitude determines the accuracy of the spectrum measurement.The error generated by the amplitude estimation of the pulse output distorted by the measurement system leads to false peaks in the measured spectrum.To eliminate these false peaks and achieve an accurate estimation of the distorted pulse amplitude,a composite neural network model is proposed,which embeds long and short-term memory(LSTM)into the UNet structure.The UNet network realizes the fusion of pulse sequence features and the LSTM model realizes pulse amplitude estimation.The model is trained using simulated pulse datasets with different amplitudes and distortion times.For the pulse height estimation,the average relative error of the trained model on the test set was approximately 0.64%,which is 27.37% lower than that of the traditional trapezoidal shaping algorithm.Offline processing of a standard iron source further validated the pulse height estimation performance of the UNet-LSTM model.After estimating the amplitude of the distorted pulses using the model,the false peak area was reduced by approximately 91% over the full spectrum and was corrected to the characteristic peak region of interest(ROI).The corrected peak area accounted for approximately 1.32%of the characteristic peak ROI area.The results indicate that the model can accurately estimate the height of distorted pulses and has substantial corrective effects on false peaks.
基金the Research Fund for the Doctoral Program of Higher Education, China (No. 20110042120014)the Project Supported by National Natural Science Foundation of China (Nos. 51204036 and 51234009)the National Basic Research of Program of China (No. 2014CB643405)
文摘A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaC12 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were inves- tigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaC12 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching tempera- ture of 80℃, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.