Ⅲ-Ⅴ quantum dot(QD) lasers monolithically grown on CMOS-compatible Si substrates are considered as essential components for integrated silicon photonic circuits.However,epitaxial growth of Ⅲ-Ⅴ materials on Si subs...Ⅲ-Ⅴ quantum dot(QD) lasers monolithically grown on CMOS-compatible Si substrates are considered as essential components for integrated silicon photonic circuits.However,epitaxial growth of Ⅲ-Ⅴ materials on Si substrates encounters three obstacles:mismatch defects,antiphase boundaries(APBs),and thermal cracks.We study the evolution of the structures on U-shaped trench-patterned Si(001) substrates with various trench orientations by homoepitaxy and the subsequent heteroepitaxial growth of GaAs film.The results show that the formation of(111)-faceted hollow structures on patterned Si(001) substrates with trenches oriented along [110] direction can effectively reduce the defect density and thermal stress in the GaAs/Si epilayers.The(111)-faceted silicon hollow structure can act as a promising platform for the direct growth of Ⅲ-Ⅴ materials for silicon based optoelectronic applications.展开更多
Light emission by inelastic tunneling(LEIT)from a metal-insulator-metal tunnel junction is an ultrafast emission process.It is a promising platform for ultrafast transduction from electrical signal to optical signal o...Light emission by inelastic tunneling(LEIT)from a metal-insulator-metal tunnel junction is an ultrafast emission process.It is a promising platform for ultrafast transduction from electrical signal to optical signal on integrated circuits.However,existing procedures of fabricating LEIT devices usually involve both top-down and bottom-up techniques,which reduces its compatibility with the modern microfabrication streamline and limits its potential applications in industrial scale-up.Here in this work,we lift these restrictions by using a multilayer insulator grown by atomic layer deposition as the tunnel barrier.For the first time,we fabricate an LEIT device fully by microfabrication techniques and show a stable performance under ambient conditions.Uniform electroluminescence is observed over the entire active region,with the emission spectrum shaped by metallic grating plasmons.The introduction of a multilayer insulator into the LEIT can provide an additional degree of freedom for engineering the energy band landscape of the tunnel barrier.The presented scheme of preparing a stable ultrathin tunnel barrier may also find some applications in a wide range of integrated optoelectronic devices.展开更多
Chiral metamaterial absorbers(CMMAs),a particular class of chiral metamaterials that refuse the transmission of incident radiation and exhibit different optical responses upon interactions with left and right circular...Chiral metamaterial absorbers(CMMAs),a particular class of chiral metamaterials that refuse the transmission of incident radiation and exhibit different optical responses upon interactions with left and right circularly polarized(RCP)light,have gained research traction in recent years.CMMAs demonstrate numerous exotic and specialized applications owing to their achievable compatibility with various physical,chemical,and biomolecular systems.Aside from their well-evolved fabrication modalities for a broad range of frequencies,CMMAs exhibit strong chiroptical effects,making them central to various detection,imaging,and energy harvesting applications.Consequently,within the past decade,studies encompassing the design,optimization,and fabrication,as well as demonstrating the diverse applications of CMMAs have emerged.In this review,the theory,design,and fabrication of CMMAs are discussed,highlighting their top-down fabrication techniques as well as recent algorithmic and machine-learning(ML)-based approaches to the design and optimization.Some of their broad-spectrum applications are also discussed,spanning their roles in enantioselective photodetection,chiral imaging,generation of hot electrons,selective temperature sensing,and active chiral plasmonics.展开更多
Reduction of noncrop habitats, intensive use of pesticides and high levels of disturbance associated with intensive crop production simplify the farming landscape and bring about a sharp decline of biodiversity. This,...Reduction of noncrop habitats, intensive use of pesticides and high levels of disturbance associated with intensive crop production simplify the farming landscape and bring about a sharp decline of biodiversity. This, in turn, weakens the biological control ecosystem service provided by arthropod natural enemies. Strategic use of flowering plants to enhance plant biodiversity in a well-targeted manner can provide natural enemies with food sources and shelter to improve biological control and reduce dependence on chemical pesticides. This article reviews the nutritional value of various types of plant-derived food for natural enemies, possible adverse effects on pest management, and the practical application of flowering plants in orchards, vegetables and field crops, agricultural systems where most research has taken place. Prospects for more effective use of flowering plants to maximize biological control of insect pests in agroecosystem are good but depend up on selection of optimal plant species based on information on the ecological mechanisms by which natural enemies are selectively favored over pest species.展开更多
Rice black streak dwarf virus (RBSDV) is transmitted by the small brown planthopper (SBPH), Laodelphax striatellus (Fallen). Non-vector rice brown planthopper (BPH), Nilaparvata lugens (Stal), shares the sam...Rice black streak dwarf virus (RBSDV) is transmitted by the small brown planthopper (SBPH), Laodelphax striatellus (Fallen). Non-vector rice brown planthopper (BPH), Nilaparvata lugens (Stal), shares the same host rice plants with SBPH in paddy fields. The changes in nutritional composition of rice plants infected by RBSDV and the ecological fitness of BPH feeding on the infected plants were studied under both artificial climate chamber and field conditions. Contents of 16 detected amino acids and soluble sugar in RBSDV infected rice plants were higher than those in the healthy ones. On the diseased plants BPH had significantly higher nymphal survival rates, nymphal duration of the males, weight of the female adults, as well as egg hatchability compared to BPH being fed on healthy plants. However, there was no obvious difference in female nymph duration, longevity and fecundity. Defense enzymes (superoxidase dismutase, SOD and catalase, CAT) and detoxifying enzymes (carboxylesterase, CAE and glutathione S-transferase, GST) in BPH adults fed on diseased plants had markedly higher activities. The results indicate rice plants infected by RBSDV improved the ecological fitness of the brown planthopper, a serious pest but not a transmitter of the RBSDV virus.展开更多
Superoxide dismutases (SODs) are a group of important antioxidant defense enzymes. In this study, a putative extracellular Cu/Zn superoxide dismutase (ecCuZnSOD) complementary DNA was cloned and characterized from...Superoxide dismutases (SODs) are a group of important antioxidant defense enzymes. In this study, a putative extracellular Cu/Zn superoxide dismutase (ecCuZnSOD) complementary DNA was cloned and characterized from the whitefly, Bemisia tabaci. Quantitative polymerase chain reaction analysis showed that the expression level of BtecCuZnSOD was more than 10-fold higher in the invasive Middle East Asia Minor 1 (MEAM1) than in the native Asia II 3 species of the B. tabaci species complex. After exposure to low temperature (4 ℃), the expression of Bt-ecCuZnSOD gene was significantly up-regulated in MEAM1 but not in Asia II 3. Furthermore, the expression level ofB. tabaci intracellular CuZnSOD (Bt-icCuZnSOD), Bt-ecCuZnSOD and mitochondrial MnSOD (Bt-mMnSOD) was compared after transferring MEAM1 and Asia II 3 whiteflies from favorable (cotton) to unfavorable host plants (tobacco). On cotton, both CuZnSOD genes were expressed at a higher level in MEAM1 compared with Asia II 3. Interestingly, after transferring onto tobacco, the expression of Bt-ecCuZnSOD was significantly induced in Asia II 3 but not in MEAM1. On the other hand, while Bt-mMnSOD was expressed equally in both species on cotton, Bt-mMnSOD messenger RNA was up-regulated in MEAM 1 on tobacco. Consistently, enzymatic activity assays of CuZnSOD and MnSOD demonstrated that CuZnSOD might play an important protective role against oxidative stress in Asia II 3, whereas MnSOD activation was critical for MEAM1 whiteflies during host adaptation. Taken together, our results suggest that the successful invasion ofMEAM 1 is correlated with its constitutive high activity of CuZnSOD and inducible expression of MnSOD under stress conditions.展开更多
Noble metallic nanostructures exhibit special optical properties resulting from excitation of surface plasmons. Among the various metallic nanostructures, nanorods have attracted particular attention because of their ...Noble metallic nanostructures exhibit special optical properties resulting from excitation of surface plasmons. Among the various metallic nanostructures, nanorods have attracted particular attention because of their unique and intriguing shape-dependent plasmonic properties. Nanorods can sup- port transverse and longitudinal plasmon modes, the latter ones depending strongly on the aspect ratio of the nanorod. These modes can be routinely tuned from the visible to the near-infrared spectral regions. Although nanorods have been investigated extensively, there are few studies de- voted to nanostructures deviating from the nanorod shape. This review provides an overview of recent progress in the development of two kinds of novel quasi-one-dimensional silver nanostruc- tures, nanorice and nanocarrot, including their syntheses, crystalline characterizations, plasmonic property analyses, and performance in plasmonic sensing applications.展开更多
We report a facile method of preparing novel branched silver nanowire structures such as Y-shaped, K-shaped and other multi-branched nanowires. These branched nanostructures are synthesized by reducing silver nitrate ...We report a facile method of preparing novel branched silver nanowire structures such as Y-shaped, K-shaped and other multi-branched nanowires. These branched nanostructures are synthesized by reducing silver nitrate (AgNO3) in polyethylene glycol (PEG) with polyvinglpyrrolidone (PVP) as capping agent. Statistical data indicate that for the "y" typed branched nanowire, the branches grow out from the side of the trunk nanowire in a preferential orientation with an angle of 55° between the branch and the trunk. Transmission electron microscopy (TEM) studies indicate that the defects on silver nanowires could support the growth of branched nanowires. Conditions such as the molar ratio of PVP/AgNO3, the reaction temperature, and the degree of polymerization of reducing agent and PVP play important roles in determining the yield of the silver branches. Due to the rough surface, these branched nanostructures can be used as efficient substrates for surface-enhanced Raman scattering applications.展开更多
Fast evolving nanoseienees and nanotechnology in China has made it one of the front countries of nanotechnology development. Ill this review, we summarize some most recent progresses in nanoseienee research and nanote...Fast evolving nanoseienees and nanotechnology in China has made it one of the front countries of nanotechnology development. Ill this review, we summarize some most recent progresses in nanoseienee research and nanotechnology development in China. The topics we selected in this article include llano-fabrication, nanocatalysis, bioinspired nanoteehnology, green printing nanotechnology, nanoplasmonics, nanomedicine, nanomaterials and their applications, energy and environmental nanoteehnology, nano EHS (nanosafety), etc. Most of them have great potentials in applications or application-related key issues in future.展开更多
Tip-enhanced Raman spectroscopy (TERS) is high-sensitivity and high spatial-resolution optical analytical technique with nanoscale resolution beyond the diffraction limit. It is also one of the most recent advances ...Tip-enhanced Raman spectroscopy (TERS) is high-sensitivity and high spatial-resolution optical analytical technique with nanoscale resolution beyond the diffraction limit. It is also one of the most recent advances in nanoscale chemical analysis. This review provides an overview of the state-of-art inTERS, in-depth information about the different available types of instruments including their (dis)advantages and capabilities. Finally, an overview about recent development in High-Vacuum TERS is given and some challenges are raised.展开更多
Extreme ultraviolet lithography(EUVL)has been demonstrated to meet the industrial requirements of new-generation semiconductor fabrication.The development of high-power EUV sources is a long-term critical challenge to...Extreme ultraviolet lithography(EUVL)has been demonstrated to meet the industrial requirements of new-generation semiconductor fabrication.The development of high-power EUV sources is a long-term critical challenge to the implementation of EUVL in high-volume manufacturing(HVM),together with other technologies such as photoresist and mask.Historically,both theoretical studies and experiments have clearly indicated that the CO 2 laser-produced plasma(LPP)system is a promising solution for EUVL source,able to realize high conversion efficiency(CE)and output power.Currently,ASML’s NXE:3400B EUV scanner configuring CO_(2) LPP source sys-tem has been installed and operated at chipmaker customers.Mean-while,other research teams have made different progresses in the development of LPP EUV sources.However,in their technologies,some critical areas need to be further improved to meet the requirements of 5 nm node and below.Critically needed improvements include higher laser power,stable droplet generation system and longer collector life-time.In this paper,we describe the performance characteristics of the laser system,droplet generator and mirror collector for different EUV sources,and also the new development results.展开更多
CaCu3Ti4O12 ceramics doped with different contents of Sc203 (mol%, x = 0, 0.05, 0.10, 0.15, and 0.20) were prepared by the traditional solid-state reaction method. Scanning electron microscope (SEM) and X-ray diff...CaCu3Ti4O12 ceramics doped with different contents of Sc203 (mol%, x = 0, 0.05, 0.10, 0.15, and 0.20) were prepared by the traditional solid-state reaction method. Scanning electron microscope (SEM) and X-ray diffraction (XRD) were used in the microstructural studies of the specimen, and the electrical properties were inves- tigated. XRD results show that the Sc has no influence on the phase composition. The results from the dielectric measurements show that further increase of Sc doping could decrease the dielectric loss slightly. A high dielectric constant and low dielectric loss can be achieved when the doping concentration is 0.10 mol%.展开更多
The spin-orbit interaction (SOI) of light has been intensively studied in nanophotonics because it enables sensitive control of photons' spin degree of freedom and thereby the trajectories of the photons, which is ...The spin-orbit interaction (SOI) of light has been intensively studied in nanophotonics because it enables sensitive control of photons' spin degree of freedom and thereby the trajectories of the photons, which is useful for applications such as signal encoding and routing. A recent study [Phys. Rev. Lett. 117, 166803 (2016)] showed that the SOI of photons manifests in the presence of a gradient in the permittivity of the medium through which the photons propagate; this enhances the scattering of circularly polarized light and results in the photons propagating along twisted trajectories. Here we theoretically predict that, because of the equivalence between an inhomogeneous dielectric medium and a gravitational field demonstrated in transformation optics, a significant SOI is induced onto circularly polarized light passing by the gravitational lens of a black hole. This leads to: i) the photons to propagate along chiral trajectories if the size of the black hole is smaller than the wavelength of the incident photons; ii) the resulting image of the gravitational lens to manifest an azimuthal rotation because of these chiral trajectories. The findings open for a way to probe for and discover subwavelength-size black holes using circularly polarized light.展开更多
基金the National Natural Science Foundation of China under Grant Nos.61635011,61975230,61804177,11434041 and 11574356the National Key Research and Development Program of China(2016YFA0300600 and 2016YFA0301700)+1 种基金the Key Research Program of Frontier Sciences,CAS(No.QYZDB-SSW-JSC009)Ting Wang is supported by the Youth Innovation Promotion Association of CAS(No.2018011).
文摘Ⅲ-Ⅴ quantum dot(QD) lasers monolithically grown on CMOS-compatible Si substrates are considered as essential components for integrated silicon photonic circuits.However,epitaxial growth of Ⅲ-Ⅴ materials on Si substrates encounters three obstacles:mismatch defects,antiphase boundaries(APBs),and thermal cracks.We study the evolution of the structures on U-shaped trench-patterned Si(001) substrates with various trench orientations by homoepitaxy and the subsequent heteroepitaxial growth of GaAs film.The results show that the formation of(111)-faceted hollow structures on patterned Si(001) substrates with trenches oriented along [110] direction can effectively reduce the defect density and thermal stress in the GaAs/Si epilayers.The(111)-faceted silicon hollow structure can act as a promising platform for the direct growth of Ⅲ-Ⅴ materials for silicon based optoelectronic applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12004222 and 91850207)the National Key Research and Development Program of China (Grant Nos. 2017YFA0303504 and 2017YFA0205800)+2 种基金the Fundamental Research Funds for the Central Universities, Chinathe Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000)the Postdoctoral Science Foundation of China (Grant No. 2020M682223)
文摘Light emission by inelastic tunneling(LEIT)from a metal-insulator-metal tunnel junction is an ultrafast emission process.It is a promising platform for ultrafast transduction from electrical signal to optical signal on integrated circuits.However,existing procedures of fabricating LEIT devices usually involve both top-down and bottom-up techniques,which reduces its compatibility with the modern microfabrication streamline and limits its potential applications in industrial scale-up.Here in this work,we lift these restrictions by using a multilayer insulator grown by atomic layer deposition as the tunnel barrier.For the first time,we fabricate an LEIT device fully by microfabrication techniques and show a stable performance under ambient conditions.Uniform electroluminescence is observed over the entire active region,with the emission spectrum shaped by metallic grating plasmons.The introduction of a multilayer insulator into the LEIT can provide an additional degree of freedom for engineering the energy band landscape of the tunnel barrier.The presented scheme of preparing a stable ultrathin tunnel barrier may also find some applications in a wide range of integrated optoelectronic devices.
基金the China Postdoctoral Science Foundation under Grant No.2019M663467the National Natural Science Foundation of China under Grant No.62005037+2 种基金the Sichuan Science and Technology Program under Grant No.2020YJ0041the National Key Research and Development Program under Grant No.2019YFB2203400the“111 Project”under Grant No.B20030.
文摘Chiral metamaterial absorbers(CMMAs),a particular class of chiral metamaterials that refuse the transmission of incident radiation and exhibit different optical responses upon interactions with left and right circularly polarized(RCP)light,have gained research traction in recent years.CMMAs demonstrate numerous exotic and specialized applications owing to their achievable compatibility with various physical,chemical,and biomolecular systems.Aside from their well-evolved fabrication modalities for a broad range of frequencies,CMMAs exhibit strong chiroptical effects,making them central to various detection,imaging,and energy harvesting applications.Consequently,within the past decade,studies encompassing the design,optimization,and fabrication,as well as demonstrating the diverse applications of CMMAs have emerged.In this review,the theory,design,and fabrication of CMMAs are discussed,highlighting their top-down fabrication techniques as well as recent algorithmic and machine-learning(ML)-based approaches to the design and optimization.Some of their broad-spectrum applications are also discussed,spanning their roles in enantioselective photodetection,chiral imaging,generation of hot electrons,selective temperature sensing,and active chiral plasmonics.
文摘Reduction of noncrop habitats, intensive use of pesticides and high levels of disturbance associated with intensive crop production simplify the farming landscape and bring about a sharp decline of biodiversity. This, in turn, weakens the biological control ecosystem service provided by arthropod natural enemies. Strategic use of flowering plants to enhance plant biodiversity in a well-targeted manner can provide natural enemies with food sources and shelter to improve biological control and reduce dependence on chemical pesticides. This article reviews the nutritional value of various types of plant-derived food for natural enemies, possible adverse effects on pest management, and the practical application of flowering plants in orchards, vegetables and field crops, agricultural systems where most research has taken place. Prospects for more effective use of flowering plants to maximize biological control of insect pests in agroecosystem are good but depend up on selection of optimal plant species based on information on the ecological mechanisms by which natural enemies are selectively favored over pest species.
文摘Rice black streak dwarf virus (RBSDV) is transmitted by the small brown planthopper (SBPH), Laodelphax striatellus (Fallen). Non-vector rice brown planthopper (BPH), Nilaparvata lugens (Stal), shares the same host rice plants with SBPH in paddy fields. The changes in nutritional composition of rice plants infected by RBSDV and the ecological fitness of BPH feeding on the infected plants were studied under both artificial climate chamber and field conditions. Contents of 16 detected amino acids and soluble sugar in RBSDV infected rice plants were higher than those in the healthy ones. On the diseased plants BPH had significantly higher nymphal survival rates, nymphal duration of the males, weight of the female adults, as well as egg hatchability compared to BPH being fed on healthy plants. However, there was no obvious difference in female nymph duration, longevity and fecundity. Defense enzymes (superoxidase dismutase, SOD and catalase, CAT) and detoxifying enzymes (carboxylesterase, CAE and glutathione S-transferase, GST) in BPH adults fed on diseased plants had markedly higher activities. The results indicate rice plants infected by RBSDV improved the ecological fitness of the brown planthopper, a serious pest but not a transmitter of the RBSDV virus.
基金Acknowledgments Financial support for this study was provided by the National Natural Science Foundation of China (Projects 31071686, 31171848), the Program for New Century Excellent Talents in University (NCET-12-0483) and the Specialized Research Fund for the Doctoral Program of Higher Education (Project 20120101110077).
文摘Superoxide dismutases (SODs) are a group of important antioxidant defense enzymes. In this study, a putative extracellular Cu/Zn superoxide dismutase (ecCuZnSOD) complementary DNA was cloned and characterized from the whitefly, Bemisia tabaci. Quantitative polymerase chain reaction analysis showed that the expression level of BtecCuZnSOD was more than 10-fold higher in the invasive Middle East Asia Minor 1 (MEAM1) than in the native Asia II 3 species of the B. tabaci species complex. After exposure to low temperature (4 ℃), the expression of Bt-ecCuZnSOD gene was significantly up-regulated in MEAM1 but not in Asia II 3. Furthermore, the expression level ofB. tabaci intracellular CuZnSOD (Bt-icCuZnSOD), Bt-ecCuZnSOD and mitochondrial MnSOD (Bt-mMnSOD) was compared after transferring MEAM1 and Asia II 3 whiteflies from favorable (cotton) to unfavorable host plants (tobacco). On cotton, both CuZnSOD genes were expressed at a higher level in MEAM1 compared with Asia II 3. Interestingly, after transferring onto tobacco, the expression of Bt-ecCuZnSOD was significantly induced in Asia II 3 but not in MEAM1. On the other hand, while Bt-mMnSOD was expressed equally in both species on cotton, Bt-mMnSOD messenger RNA was up-regulated in MEAM 1 on tobacco. Consistently, enzymatic activity assays of CuZnSOD and MnSOD demonstrated that CuZnSOD might play an important protective role against oxidative stress in Asia II 3, whereas MnSOD activation was critical for MEAM1 whiteflies during host adaptation. Taken together, our results suggest that the successful invasion ofMEAM 1 is correlated with its constitutive high activity of CuZnSOD and inducible expression of MnSOD under stress conditions.
文摘Noble metallic nanostructures exhibit special optical properties resulting from excitation of surface plasmons. Among the various metallic nanostructures, nanorods have attracted particular attention because of their unique and intriguing shape-dependent plasmonic properties. Nanorods can sup- port transverse and longitudinal plasmon modes, the latter ones depending strongly on the aspect ratio of the nanorod. These modes can be routinely tuned from the visible to the near-infrared spectral regions. Although nanorods have been investigated extensively, there are few studies de- voted to nanostructures deviating from the nanorod shape. This review provides an overview of recent progress in the development of two kinds of novel quasi-one-dimensional silver nanostruc- tures, nanorice and nanocarrot, including their syntheses, crystalline characterizations, plasmonic property analyses, and performance in plasmonic sensing applications.
文摘We report a facile method of preparing novel branched silver nanowire structures such as Y-shaped, K-shaped and other multi-branched nanowires. These branched nanostructures are synthesized by reducing silver nitrate (AgNO3) in polyethylene glycol (PEG) with polyvinglpyrrolidone (PVP) as capping agent. Statistical data indicate that for the "y" typed branched nanowire, the branches grow out from the side of the trunk nanowire in a preferential orientation with an angle of 55° between the branch and the trunk. Transmission electron microscopy (TEM) studies indicate that the defects on silver nanowires could support the growth of branched nanowires. Conditions such as the molar ratio of PVP/AgNO3, the reaction temperature, and the degree of polymerization of reducing agent and PVP play important roles in determining the yield of the silver branches. Due to the rough surface, these branched nanostructures can be used as efficient substrates for surface-enhanced Raman scattering applications.
文摘Fast evolving nanoseienees and nanotechnology in China has made it one of the front countries of nanotechnology development. Ill this review, we summarize some most recent progresses in nanoseienee research and nanotechnology development in China. The topics we selected in this article include llano-fabrication, nanocatalysis, bioinspired nanoteehnology, green printing nanotechnology, nanoplasmonics, nanomedicine, nanomaterials and their applications, energy and environmental nanoteehnology, nano EHS (nanosafety), etc. Most of them have great potentials in applications or application-related key issues in future.
文摘Tip-enhanced Raman spectroscopy (TERS) is high-sensitivity and high spatial-resolution optical analytical technique with nanoscale resolution beyond the diffraction limit. It is also one of the most recent advances in nanoscale chemical analysis. This review provides an overview of the state-of-art inTERS, in-depth information about the different available types of instruments including their (dis)advantages and capabilities. Finally, an overview about recent development in High-Vacuum TERS is given and some challenges are raised.
基金supported by the National Key R&D Program of China(2019YFB1704600).
文摘Extreme ultraviolet lithography(EUVL)has been demonstrated to meet the industrial requirements of new-generation semiconductor fabrication.The development of high-power EUV sources is a long-term critical challenge to the implementation of EUVL in high-volume manufacturing(HVM),together with other technologies such as photoresist and mask.Historically,both theoretical studies and experiments have clearly indicated that the CO 2 laser-produced plasma(LPP)system is a promising solution for EUVL source,able to realize high conversion efficiency(CE)and output power.Currently,ASML’s NXE:3400B EUV scanner configuring CO_(2) LPP source sys-tem has been installed and operated at chipmaker customers.Mean-while,other research teams have made different progresses in the development of LPP EUV sources.However,in their technologies,some critical areas need to be further improved to meet the requirements of 5 nm node and below.Critically needed improvements include higher laser power,stable droplet generation system and longer collector life-time.In this paper,we describe the performance characteristics of the laser system,droplet generator and mirror collector for different EUV sources,and also the new development results.
基金financially supported by the National Nature Science Foundation of China(No.61205128)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20123227120021)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK2012156)the Opening Project of State Key Laboratory of Electronic Thin Films and Integrated Devices(No.KFJJ201105)Application Program for Basic Research of Changzhou(No.CJ20125001)the Universities Natural Science Research Project of Jiangsu Province(No.13KJB430006)
文摘CaCu3Ti4O12 ceramics doped with different contents of Sc203 (mol%, x = 0, 0.05, 0.10, 0.15, and 0.20) were prepared by the traditional solid-state reaction method. Scanning electron microscope (SEM) and X-ray diffraction (XRD) were used in the microstructural studies of the specimen, and the electrical properties were inves- tigated. XRD results show that the Sc has no influence on the phase composition. The results from the dielectric measurements show that further increase of Sc doping could decrease the dielectric loss slightly. A high dielectric constant and low dielectric loss can be achieved when the doping concentration is 0.10 mol%.
基金Acknowledgements This work was supported by the Basic Research Program of Ministry of Science and Technology of China (Grant No. 2015CB932400), the National Natural Science Foundation of China (Grants Nos. 11134013, 11227407, 11374012, and 11422436). We thank Professor Zong-Hong Zhu for the helpful discussion.
文摘The spin-orbit interaction (SOI) of light has been intensively studied in nanophotonics because it enables sensitive control of photons' spin degree of freedom and thereby the trajectories of the photons, which is useful for applications such as signal encoding and routing. A recent study [Phys. Rev. Lett. 117, 166803 (2016)] showed that the SOI of photons manifests in the presence of a gradient in the permittivity of the medium through which the photons propagate; this enhances the scattering of circularly polarized light and results in the photons propagating along twisted trajectories. Here we theoretically predict that, because of the equivalence between an inhomogeneous dielectric medium and a gravitational field demonstrated in transformation optics, a significant SOI is induced onto circularly polarized light passing by the gravitational lens of a black hole. This leads to: i) the photons to propagate along chiral trajectories if the size of the black hole is smaller than the wavelength of the incident photons; ii) the resulting image of the gravitational lens to manifest an azimuthal rotation because of these chiral trajectories. The findings open for a way to probe for and discover subwavelength-size black holes using circularly polarized light.