At present what are the key points focused in the research of loop-delay estimation for the digital predistorter in the radio frequency (RF) power amplifier system is reducing its complexity of engineering realizati...At present what are the key points focused in the research of loop-delay estimation for the digital predistorter in the radio frequency (RF) power amplifier system is reducing its complexity of engineering realization and improving anti-jamming ability and computational speed. Besides, opening up its application scope should be contained. For these targets, a novel method including integer loop delay estimation and fractional part is proposed. The integer part applies amplitude-difference summation function and the fractional one adopts the method of finite impulse response (FIR) linear interpolation. The algorithm finds wide applications. What is more, strong anti-jamming ability and low complexity are also its merits. Simulation results support the above opinion. Digital predistortion (DPD) system based on this algorithm achieves good performance.展开更多
基金supported by the Circuit and System Foremost Discipline of Zhejiang Province under Grant No. ZZ050103-11
文摘At present what are the key points focused in the research of loop-delay estimation for the digital predistorter in the radio frequency (RF) power amplifier system is reducing its complexity of engineering realization and improving anti-jamming ability and computational speed. Besides, opening up its application scope should be contained. For these targets, a novel method including integer loop delay estimation and fractional part is proposed. The integer part applies amplitude-difference summation function and the fractional one adopts the method of finite impulse response (FIR) linear interpolation. The algorithm finds wide applications. What is more, strong anti-jamming ability and low complexity are also its merits. Simulation results support the above opinion. Digital predistortion (DPD) system based on this algorithm achieves good performance.