Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles...Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states.展开更多
An efficient room-temperature self-powered,broadband(300 nm–1100 nm)photodetector based on a CuO–TiO_(2)/TiO_(2)/p-Si(100)heterostructure is demonstrated.The CuO–TiO_(2)nanocomposites were grown in a two-zone horiz...An efficient room-temperature self-powered,broadband(300 nm–1100 nm)photodetector based on a CuO–TiO_(2)/TiO_(2)/p-Si(100)heterostructure is demonstrated.The CuO–TiO_(2)nanocomposites were grown in a two-zone horizontal tube furnace on a 40 nm TiO_(2)thin film deposited on a p-type Si(100)substrate.The CuO–TiO_(2)/TiO_(2)/p-Si(100)devices exhibited excellent rectification characteristics under dark and individual photoillumination conditions.The devices showed remarkable photo-response under broadband(300–1100 nm)light illumination at zero bias voltage,indicating the achievement of highly sensitive self-powered photodetectors at visible and near-infrared light illuminations.The maximum response of the devices is observed at 300 nm for an illumination power of 10 W.The response and recovery times were calculated as 86 ms and 78 ms,respectively.Moreover,under a small bias,the devices showed a prompt binary response by altering the current from positive to negative under illumination conditions.The main reason behind this binary response is the low turn-on voltage and photovoltaic characteristics of the devices.Under illumination conditions,the generation of photocurrent is due to the separation of photogenerated electron-hole pairs within the built-in electric field at the CuO–TiO_(2)/TiO_(2)interface.These characteristics make the CuO–TiO_(2)/TiO_(2)broadband photodetectors suitable for applications that require high response speeds and self-sufficient functionality.展开更多
In this investigation,a picosecond laser was employed to fabricate surface textures on a Stavax steel substrate,which is a key material for mold fabrication in the manufacturing of various polymer products.Three main ...In this investigation,a picosecond laser was employed to fabricate surface textures on a Stavax steel substrate,which is a key material for mold fabrication in the manufacturing of various polymer products.Three main types of surface textures were fabricated on a Stavax steel substrate:periodic ripples,a two-scale hierarchical two-dimensional array of micro-bumps,and a micro-pits array with nanoripples.The wettability of the laser-textured Stavax steel surface was converted from its original hydrophilicity into hydrophobicity and even super-hydrophobicity after exposure to air.The results clearly show that this super-hydrophobicity is mainly due to the surface textures.The ultrafast laserinduced catalytic effect may play a secondary role in modifying the surface chemistry so as to lower the surface energy.The laser-induced surface textures on the metal mold substrates were then replicated onto polypropylene substrates via the polymer injection molding process.The surface wettability of the molded polypropylene was found to be changed from the original hydrophilicity to superhydrophobicity.This developed process holds the potential to improve the performance of fabricated plastic products in terms of wettability control and easy cleaning.展开更多
Recently,various slippery liquid-infused porous surfaces(SLIPS)have been fabricated for the protection of various materials.However,these SLIPSs are limited by their underlying storage structure and superficial lubric...Recently,various slippery liquid-infused porous surfaces(SLIPS)have been fabricated for the protection of various materials.However,these SLIPSs are limited by their underlying storage structure and superficial lubricant layer,showing poor durability.Herein,inspired by the high-strength structure of Shell nacre’s“brick-mud”layer,we fabricated an all-inorganic composite coating by using wet chemically etched MXene as a brick and an aluminum phosphate binder(AP)as mud.Then,a series of microwell-array structures were designed and prepared on the coating via nanosecond ultrafast laser writing ablation technology.Subsequently,the textured surface was modified by a silane coupling agent.Vinyl-terminated polydimethylsiloxane(PDMS)was tightly grafted onto the porous surface through a thiol-ene click reaction to obtain lubricant grafted texture surface(LGTS).The prepared LGTS showed good lubrication properties for multiple phases,including various liquids,ice crystals,and solids.It exhibits excellent chemical stability and mechanical durability under deionized water impact,centrifugal test,strong acid solutions,anti/de-icing cycles,and high-intensity friction.Thus,the proposed strategy for constructing robust LGTS will greatly promote theoretical research on super wetting interfacial materials and their applications in the fields of antifouling,anti/de-icing,and lubricating protection.展开更多
The electrochemical behavior of Ti-6Al-4V with 1 mm and 16 mm thickness prepared by electron beam powder bed fusion(EB-PBF)was investigated in phosphate buffered saline.Electrochemical results showed that EB-PBF Ti-6A...The electrochemical behavior of Ti-6Al-4V with 1 mm and 16 mm thickness prepared by electron beam powder bed fusion(EB-PBF)was investigated in phosphate buffered saline.Electrochemical results showed that EB-PBF Ti-6Al-4V with a larger component size was more resistant to corrosion compared to the smaller component,because of less acicularαʹphase content and moreβphase content.As a non-equilibrium phase in the“high-energy state”,αʹphase has a greater susceptibility to corrode and reduces the corrosion resistance of the material,whileβphase improves corrosion resistance of titanium alloys.The results show that the phase composition has a more significant effect on the corrosion performance than the grain size.展开更多
The purpose of this paper is to alleviate the potential safety problems associated with the human driver and the automatic system competing for the right of way due to different objectives by mitigating the human-mach...The purpose of this paper is to alleviate the potential safety problems associated with the human driver and the automatic system competing for the right of way due to different objectives by mitigating the human-machine conflict phenomenon in human-machine shared driving(HMSD)technology from the automation system.Firstly,a basic lane-changing trajectory algorithm based on the quintic polynomial in the Frenet coordinate system is developed.Then,in order to make the planned trajectory close to human behavior,naturalistic driving data is collected,based on which some lane-changing performance features are selected and analyzed.There are three aspects have been taken into consideration for the human-like lane-changing trajectory:vehicle dynamic stability performance,driving cost optimization,and collision avoidance.Finally,the HMSD experiments are conducted with the driving simulator to test the potential of the human-like lane-changing trajectory planning algorithm.The results demonstrate that the lane-changing trajectory planning algorithm with the highest degree of personalization is highly consistent with human driver behavior and consequently would potentially mitigate the human-machine conflict with the HMSD application.Furthermore,it could be further employed as an empirical trajectory prediction result.The algorithm employs the distribution state of the historical trajectory for human-like processing,simplifying the operational process and ensuring the credibility,integrity,and interpretability of the results.Moreover,in terms of optimization processing,the form of optimization search followed by collision avoidance detection is adopted to in principle reduce the calculation difficulty.Additionally,a new convex polygon collision detection method,namely the vertex embedding method,is proposed for collision avoidance detection.展开更多
In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene’s s...In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene’s surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.展开更多
Travel time reliability is of increasing importance for travelers, shippers, and transportation managers because traffic congestion has become worse in major urban areas in recent years. To better evaluate the urban n...Travel time reliability is of increasing importance for travelers, shippers, and transportation managers because traffic congestion has become worse in major urban areas in recent years. To better evaluate the urban network-wide travel time reliability, five indices based on the emerging on-demand ride service data are proposed:network free flow time rate(NFFTR), network travel time rate(NTTR), network planning time rate(NPTR), network buffer time rate(NBTR), and network buffer time rate index(NBTRI). These indices take into account the probability distribution of the travel time rate(i.e., travel time spent for the unit distance, in min/km) of each origindestination(OD) pair in the road network. We use realworld data extracted from DiDi-Chuxing, which is the largest on-demand ride service platform in China. For demonstrative purposes, the network-wide travel time reliability of Beijing is analyzed in detail from two dimensions of time and space. The results show that the road network is more unreliable in AM/PM peaks than other time periods, and the most reliable time period is the early morning. Additionally, we can find that the central region is more unreliable than other regions of the city based on the spatial analysis results. The proposed network travel time reliability indices provide insights for the comprehensive evaluation of the road network traffic dynamics and day-to-day travel time variations.展开更多
This study explores the feasibility of different laser systems to sinter screen-printed lines from nonconductive copper nanoparticles(Cu NPs)on polyethylene terephthalate polymer film.These materials are commonly used...This study explores the feasibility of different laser systems to sinter screen-printed lines from nonconductive copper nanoparticles(Cu NPs)on polyethylene terephthalate polymer film.These materials are commonly used in manufacturing functional printed electronics for large-area applications.Here,optical and thermal characterization of the materials is conducted to identify suitable laser sources and process conditions.Direct diode(808 nm),Nd:YAG(1064 nm and second harmonic of 532 nm),and ytterbium fiber(1070 nm)lasers are explored.Optimal parameters for sintering the Cu NPs are identified for each laser system,which targets low resistivity and high processing speed.Finally,the quality of the sintered tracks is quantified,and the laser sintering mechanisms observed under different wavelengths are analyzed.Practical considerations are discussed to improve the laser sintering process of Cu NPs.展开更多
基金Supported by National Key Research and Development Program of China(Grant No.2021YFB2500703)Science and Technology Department Program of Jilin Province of China(Grant No.20230101121JC).
文摘Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states.
基金CSIR-09/0973(11599)/2021-EMR-I and SERB(Project no:CRG/2021/000255),Department of Science and Technology,Govt.of India。
文摘An efficient room-temperature self-powered,broadband(300 nm–1100 nm)photodetector based on a CuO–TiO_(2)/TiO_(2)/p-Si(100)heterostructure is demonstrated.The CuO–TiO_(2)nanocomposites were grown in a two-zone horizontal tube furnace on a 40 nm TiO_(2)thin film deposited on a p-type Si(100)substrate.The CuO–TiO_(2)/TiO_(2)/p-Si(100)devices exhibited excellent rectification characteristics under dark and individual photoillumination conditions.The devices showed remarkable photo-response under broadband(300–1100 nm)light illumination at zero bias voltage,indicating the achievement of highly sensitive self-powered photodetectors at visible and near-infrared light illuminations.The maximum response of the devices is observed at 300 nm for an illumination power of 10 W.The response and recovery times were calculated as 86 ms and 78 ms,respectively.Moreover,under a small bias,the devices showed a prompt binary response by altering the current from positive to negative under illumination conditions.The main reason behind this binary response is the low turn-on voltage and photovoltaic characteristics of the devices.Under illumination conditions,the generation of photocurrent is due to the separation of photogenerated electron-hole pairs within the built-in electric field at the CuO–TiO_(2)/TiO_(2)interface.These characteristics make the CuO–TiO_(2)/TiO_(2)broadband photodetectors suitable for applications that require high response speeds and self-sufficient functionality.
基金the Agency for Science Technology and Research (A*STAR) of Singapore for financial support
文摘In this investigation,a picosecond laser was employed to fabricate surface textures on a Stavax steel substrate,which is a key material for mold fabrication in the manufacturing of various polymer products.Three main types of surface textures were fabricated on a Stavax steel substrate:periodic ripples,a two-scale hierarchical two-dimensional array of micro-bumps,and a micro-pits array with nanoripples.The wettability of the laser-textured Stavax steel surface was converted from its original hydrophilicity into hydrophobicity and even super-hydrophobicity after exposure to air.The results clearly show that this super-hydrophobicity is mainly due to the surface textures.The ultrafast laserinduced catalytic effect may play a secondary role in modifying the surface chemistry so as to lower the surface energy.The laser-induced surface textures on the metal mold substrates were then replicated onto polypropylene substrates via the polymer injection molding process.The surface wettability of the molded polypropylene was found to be changed from the original hydrophilicity to superhydrophobicity.This developed process holds the potential to improve the performance of fabricated plastic products in terms of wettability control and easy cleaning.
基金supported by the National Natural Science Foundation of China(No.52205313)Natural Science Foundation of Shandong Province(ZR2022QE161),China Postdoctoral Science Foundation(2023M734093)+1 种基金the Tribology Science Fund of State Key Laboratory of Solid Lubrication(LSL-2312)Scientific Innovation Project for Young Scientists in Shandong Provincial Universities(2023KJ145,2023KJ148).
文摘Recently,various slippery liquid-infused porous surfaces(SLIPS)have been fabricated for the protection of various materials.However,these SLIPSs are limited by their underlying storage structure and superficial lubricant layer,showing poor durability.Herein,inspired by the high-strength structure of Shell nacre’s“brick-mud”layer,we fabricated an all-inorganic composite coating by using wet chemically etched MXene as a brick and an aluminum phosphate binder(AP)as mud.Then,a series of microwell-array structures were designed and prepared on the coating via nanosecond ultrafast laser writing ablation technology.Subsequently,the textured surface was modified by a silane coupling agent.Vinyl-terminated polydimethylsiloxane(PDMS)was tightly grafted onto the porous surface through a thiol-ene click reaction to obtain lubricant grafted texture surface(LGTS).The prepared LGTS showed good lubrication properties for multiple phases,including various liquids,ice crystals,and solids.It exhibits excellent chemical stability and mechanical durability under deionized water impact,centrifugal test,strong acid solutions,anti/de-icing cycles,and high-intensity friction.Thus,the proposed strategy for constructing robust LGTS will greatly promote theoretical research on super wetting interfacial materials and their applications in the fields of antifouling,anti/de-icing,and lubricating protection.
基金This work was supported partially by the National Natural Science Foundation of China(U2241245)the CAS Interdisciplinary Innovation Team Project(JCTD-2020-10)of China+2 种基金the State Key Laboratory of Light Alloy Casting Technology for High-End Equipment(LACT-007)the Opening project of National Key Laboratory of Shock Wave and Detonation Physics(2022JCJQLB05702)the Original Fund of Nuclear Power Institute of China(kJCX-2022-YC2-20).
文摘The electrochemical behavior of Ti-6Al-4V with 1 mm and 16 mm thickness prepared by electron beam powder bed fusion(EB-PBF)was investigated in phosphate buffered saline.Electrochemical results showed that EB-PBF Ti-6Al-4V with a larger component size was more resistant to corrosion compared to the smaller component,because of less acicularαʹphase content and moreβphase content.As a non-equilibrium phase in the“high-energy state”,αʹphase has a greater susceptibility to corrode and reduces the corrosion resistance of the material,whileβphase improves corrosion resistance of titanium alloys.The results show that the phase composition has a more significant effect on the corrosion performance than the grain size.
基金Open Fund of State Key Laboratory of Automobile Simulation and Control of Jilin University(20201111).
文摘The purpose of this paper is to alleviate the potential safety problems associated with the human driver and the automatic system competing for the right of way due to different objectives by mitigating the human-machine conflict phenomenon in human-machine shared driving(HMSD)technology from the automation system.Firstly,a basic lane-changing trajectory algorithm based on the quintic polynomial in the Frenet coordinate system is developed.Then,in order to make the planned trajectory close to human behavior,naturalistic driving data is collected,based on which some lane-changing performance features are selected and analyzed.There are three aspects have been taken into consideration for the human-like lane-changing trajectory:vehicle dynamic stability performance,driving cost optimization,and collision avoidance.Finally,the HMSD experiments are conducted with the driving simulator to test the potential of the human-like lane-changing trajectory planning algorithm.The results demonstrate that the lane-changing trajectory planning algorithm with the highest degree of personalization is highly consistent with human driver behavior and consequently would potentially mitigate the human-machine conflict with the HMSD application.Furthermore,it could be further employed as an empirical trajectory prediction result.The algorithm employs the distribution state of the historical trajectory for human-like processing,simplifying the operational process and ensuring the credibility,integrity,and interpretability of the results.Moreover,in terms of optimization processing,the form of optimization search followed by collision avoidance detection is adopted to in principle reduce the calculation difficulty.Additionally,a new convex polygon collision detection method,namely the vertex embedding method,is proposed for collision avoidance detection.
文摘In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene’s surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.
基金financially supported by Zhejiang Provincial Natural Science Foundation of China [Grant No. LR17E080002]Key Laboratory of Road & Traffic Engineering of the Ministry of Education [Grant No. TJDDZHCX004]+1 种基金National Natural Science Foundation of China[Grant Nos. 51508505, 71771198, 51338008]Fundamental Research Funds for the Central Universities [Grant No. 2017QNA4025]
文摘Travel time reliability is of increasing importance for travelers, shippers, and transportation managers because traffic congestion has become worse in major urban areas in recent years. To better evaluate the urban network-wide travel time reliability, five indices based on the emerging on-demand ride service data are proposed:network free flow time rate(NFFTR), network travel time rate(NTTR), network planning time rate(NPTR), network buffer time rate(NBTR), and network buffer time rate index(NBTRI). These indices take into account the probability distribution of the travel time rate(i.e., travel time spent for the unit distance, in min/km) of each origindestination(OD) pair in the road network. We use realworld data extracted from DiDi-Chuxing, which is the largest on-demand ride service platform in China. For demonstrative purposes, the network-wide travel time reliability of Beijing is analyzed in detail from two dimensions of time and space. The results show that the road network is more unreliable in AM/PM peaks than other time periods, and the most reliable time period is the early morning. Additionally, we can find that the central region is more unreliable than other regions of the city based on the spatial analysis results. The proposed network travel time reliability indices provide insights for the comprehensive evaluation of the road network traffic dynamics and day-to-day travel time variations.
基金The corresponding author,Hongyu Zheng,would like to acknowledge the grant support of Shandong Taishan Scholar Scheme(Grant No.ts20190401).
文摘This study explores the feasibility of different laser systems to sinter screen-printed lines from nonconductive copper nanoparticles(Cu NPs)on polyethylene terephthalate polymer film.These materials are commonly used in manufacturing functional printed electronics for large-area applications.Here,optical and thermal characterization of the materials is conducted to identify suitable laser sources and process conditions.Direct diode(808 nm),Nd:YAG(1064 nm and second harmonic of 532 nm),and ytterbium fiber(1070 nm)lasers are explored.Optimal parameters for sintering the Cu NPs are identified for each laser system,which targets low resistivity and high processing speed.Finally,the quality of the sintered tracks is quantified,and the laser sintering mechanisms observed under different wavelengths are analyzed.Practical considerations are discussed to improve the laser sintering process of Cu NPs.