期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Topology optimization of chiral metamaterials with application to underwater sound insulation
1
作者 Chao WANG honggang zhao +3 位作者 Yang WANG Jie ZHONG Dianlong YU Jihong WEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1119-1138,共20页
Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metam... Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation. 展开更多
关键词 chiral metamaterial topology optimization underwater sound insulation low acoustic impedance sound transmission loss(STL)
下载PDF
An Analysis Model of Learners’ Online Learning Status Based on Deep Neural Network and Multi-Dimensional Information Fusion
2
作者 Mingyong Li Lirong Tang +3 位作者 Longfei Ma honggang zhao Jinyu Hu Yan Wei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2349-2371,共23页
The learning status of learners directly affects the quality of learning.Compared with offline teachers,it is difficult for online teachers to capture the learning status of students in the whole class,and it is even ... The learning status of learners directly affects the quality of learning.Compared with offline teachers,it is difficult for online teachers to capture the learning status of students in the whole class,and it is even more difficult to continue to pay attention to studentswhile teaching.Therefore,this paper proposes an online learning state analysis model based on a convolutional neural network and multi-dimensional information fusion.Specifically,a facial expression recognition model and an eye state recognition model are constructed to detect students’emotions and fatigue,respectively.By integrating the detected data with the homework test score data after online learning,an analysis model of students’online learning status is constructed.According to the PAD model,the learning state is expressed as three dimensions of students’understanding,engagement and interest,and then analyzed from multiple perspectives.Finally,the proposed model is applied to actual teaching,and procedural analysis of 5 different types of online classroom learners is carried out,and the validity of the model is verified by comparing with the results of the manual analysis. 展开更多
关键词 Deep learning fatigue detection facial expression recognition sentiment analysis information fusion
下载PDF
Autophagy occurs within an hour of adenosine triphosphate treatment after nerve cell damage:the neuroprotective effects of adenosine triphosphate against apoptosis 被引量:3
3
作者 Na Lu Baoying Wang +3 位作者 Xiaohui Deng honggang zhao Yong Wang Dongliang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第17期1599-1605,共7页
After hypoxia, ischemia, or inflammatory injuries to the central nervous system, the damaged cells release a large amount of adenosine triphosphate, which may cause secondary neuronal death. Autophagy is a form of cel... After hypoxia, ischemia, or inflammatory injuries to the central nervous system, the damaged cells release a large amount of adenosine triphosphate, which may cause secondary neuronal death. Autophagy is a form of cell death that also has neuroprotective effects. Cell Counting Kit assay, monodansylcadaverine staining, flow cytometry, western blotting, and real-time PCR were used to determine the effects of exogenous adenosine triphosphate treatment at different concentrations (2, 4, 6, 8, 10 mmol/L) over time (1, 2, 3, and 6 hours) on the apoptosis and autophagy of SH-SY5Y cells. High concentrations of extracellular adenosine triphosphate induced autophagy and apoptosis of SH-SYSY cells. The enhanced autophagy first appeared, and peaked at 1 hour after treatment with adenosine triphosphate. Cell apoptosis peaked at 3 hours, and persisted through 6 hours. With prolonged exposure to the adenosine triphosphate treatment, the fraction of apoptotic cells increased. These data suggest that the SH-SY5Y neural cells initiated autophagy against apoptosis within an hour of adenosine triphosphate treatment to protect themselves against injury. 展开更多
关键词 nerve regeneration neurons adenosine triphosphate SH-SY5Y cells AUTOPHAGY APOPTOSIS cell culture monodansylcadaverine flow cytometry cell viability Bcl-2 Bax Beclin 1 neuronal damage NSFC grant neural regeneration
下载PDF
静水压下水声吸声材料研究进展
4
作者 韦叶金 赵宏刚 +5 位作者 王洋 钟杰 孙垚 郑周甫 杨海滨 温激鸿 《科学通报》 EI CAS CSCD 北大核心 2024年第17期2368-2379,共12页
随着声呐技术的快速发展,潜艇等水下装备的声隐身要求变得越来越高.水声吸声材料是实现水下装备声隐身的重要手段之一,多年来持续受到广泛研究.相比空气声,水下声波传播更快、波长更长,低频有效吸声更加困难.此外,水下装备的下潜深度逐... 随着声呐技术的快速发展,潜艇等水下装备的声隐身要求变得越来越高.水声吸声材料是实现水下装备声隐身的重要手段之一,多年来持续受到广泛研究.相比空气声,水下声波传播更快、波长更长,低频有效吸声更加困难.此外,水下装备的下潜深度逐步增大,水声材料需要承受很大的静水压力.已有研究表明,静水压力对吸声材料的声学性能影响显著,实现高静水压下低频宽带吸声的材料设计是该领域的技术难题,需进一步深化吸声机理分析和优化设计工作.本文首先介绍了当前水声吸声材料在静水压下的分析方法,总结了材料的主流吸声机理以及静水压力对吸声的影响,并从材料设计方面综述了抗静水压吸声材料的研究现状,最后展望了静水压力下吸声材料的研究趋势和挑战,以期推动静水压下水声吸声材料的发展. 展开更多
关键词 水声吸声材料 抗静水压 吸声机理 分析方法 材料设计
原文传递
学习反向设计声学超材料以提高性能
5
作者 张弘佳 刘家玮 +6 位作者 马炜彤 杨海涛 王洋 杨海滨 赵宏刚 郁殿龙 温激鸿 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2023年第7期35-43,共9页
弹性超材料可被用于实现多种特殊功能,例如振动控制和波操纵,其中吸声是声学超材料完成的典型任务.利用机器学习方法反向设计超材料因利用数据驱动且不依赖经验的优势而备受关注,成为重要的设计范式之一.但现有的工作大多集中在验证反... 弹性超材料可被用于实现多种特殊功能,例如振动控制和波操纵,其中吸声是声学超材料完成的典型任务.利用机器学习方法反向设计超材料因利用数据驱动且不依赖经验的优势而备受关注,成为重要的设计范式之一.但现有的工作大多集中在验证反向设计神经网络的设计准确性,很少有人探索如何利用神经网络进行反向设计以提高材料性能.为此,我们的工作研究了反向设计框架在提升3D多尺度空腔型声学超材料的声学性能方面的能力.框架中有正向和反向网络,在训练过程中将目标吸声曲线(100~10000 Hz)作为反向网络的输入,并输出具有满足此吸声曲线的相应超材料结构,随后将其输入正向网络进行声学性能评估.结果表明,经过训练的前向网络可对超过训练集结构参数范围的结构(既“未见过”的结构)进行高精度性能预测,因此具有较高泛化性能.更重要的是,反向网络能够自发地采用超出范围限制的结构参数,以确保满足平均吸声系数高于训练集中任何数据的吸声目标,因此可利用反向设计突破训练集中数据的声学性能,进行性能优化.通过超限探索,反向设计精度从仅有9.2%的设计拥有<0.0001的均方误差显着提高到99.6%.最后,利用案例证明神经网络拥有的超限探索能力对旨在提高性能的反向设计有重要意义.希望这项工作能为更高性能弹性超材料的优化设计提供支撑. 展开更多
关键词 神经网络 前向网络 反向设计 数据驱动 声学性能 超材料 设计范式 均方误差
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部