Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption...Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption and waste gas emissions.To address this,electrocatalytic nitric oxide reduction reaction(NORR)has emerged as a promising strategy to bridge NH3consumption to NH3production,harnessing renewable electricity for a sustainable future.Copper(Cu)stands out as a prominent electrocatalyst for NO reduction,given its exceptional NH3yield and selectivity.However,a crucial aspect that remains insufficiently explored is the effects of morphology and valence states of Cu on the NORR performance.In this investigation,we synthesized CuO nanowires(CuO-NF)and Cu nanocubes(Cu-NF)as cathodes through an in situ growth method.Remarkably,CuO-NF exhibited an impressive NH3yield of 0.50±0.02 mg cm^(-2)h^(-1)at-0.6 V vs.reversible hydrogen electrode(RHE)with faradaic efficiency of29,68%±1,35%,surpassing that of Cu-NF(0.17±0.01 mg cm^(-2)h^(-1),16.18%±1.40%).Throughout the electroreduction process,secondary cubes were generated on the CuO-NF surface,preserving their nanosheet cluster morphology,sustained by an abundant supply of subsurface oxygen(s-O)even after an extended duration of 10 h,until s-O depletion ensued.Conversely,Cu-NF exhibited inadequate s-O content,leading to rapid crystal collapse within the same timeframe.The distinctive current-potential relationship,akin to a volcano-type curve,was attributed to distinct NO hydrogenation mechanisms.Further Tafel analysis revealed the exchange current density(i0)and standard heterogeneous rate constant(k0)for CuO-NF,yielding 3.44×10^(-6)A cm^(-2)and 3.77×10^(-6)cm^(-2)s^(-1)when NORR was driven by overpotentials.These findings revealed the potential of CuO-NF for NO reduction and provided insights into the intricate interplay between crystal morphology,valence states,and electrochemical performance.展开更多
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in re...Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.展开更多
In this work, a series of coal-based active carbon (CAC) catalysts loaded by A1203 were prepared by sol-gel method and used for the simulta- neous catalytic hydrolysis of carbonyl sulfide (COS) and carbon disulfi...In this work, a series of coal-based active carbon (CAC) catalysts loaded by A1203 were prepared by sol-gel method and used for the simulta- neous catalytic hydrolysis of carbonyl sulfide (COS) and carbon disulfide (CS2) at relatively low temperatures of 30-70 ℃. The influences of calcinations temperatures and operation conditions such as: reaction temperature, 02 concentration, gas hourly space velocity (GHSV) and relative humidity (RH) were also discussed respectively. The results showed that catalysts with 5.0 wt% A1203 calcined at 300 ℃ had supe- rior activity for the simultaneous catalytic hydrolysis of COS and CS2. When the reaction temperature was above 50 ℃, catalytic hydrolysis activity of COS could be enhanced but that of CS2 was inhibited. Too high RH could make the catalytic hydrolysis activities of COS and CS2 decrease. A small amount of 02 introduction could enhance the simultaneous catalytic hydrolysis activities of COS and CS2.展开更多
This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials wer...This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso-and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated,and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process.展开更多
In this work,the phosphomolybdate(HPMo)modification strategy was applied to improve the N_(2) selectivity of Mn Co-BTC@SiO_(2)catalyst for the selective catalytic reduction of NO_(x),and further,the mechanism of HPMo ...In this work,the phosphomolybdate(HPMo)modification strategy was applied to improve the N_(2) selectivity of Mn Co-BTC@SiO_(2)catalyst for the selective catalytic reduction of NO_(x),and further,the mechanism of HPMo modification on enhanced catalytic performance was explored.Among Mn Co-BTC@SiO_(2-x) catalysts with different HPMo concentrations,Mn CoBTC@SiO_(2)-0.75 catalyst exhibited not only the highest NH_(3)-SCR performance(95% at 200-300℃)but also the best N_(2)selectivity(exceed 80% at 100-300℃)due to the appropriate redox capacity,greater surface acidity.X-ray photoelectron spectrometer(XPS)and temperature programmed reduction of H_(2)(H_(2)-TPR)results showed that the modification with HPMo reduced the oxidation-reduction performance of the catalyst due to electron transfer from Mo^(5+)to Mn^(4+)/Mn^(3+)and prevent the excessive oxidation of ammonia adsorption species.NH_(3)temperature-programmed desorption of(NH_(3)-TPD)results showed that the modification with HPMo could significantly improve the surface acidity and NH_(3)adsorption,which enhance the catalytic activity and N_(2)selectivity.In-situ diffused reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS)revealed that modification with HPMo increased significantly the amount of adsorbed NH_(3)species on the Bronsted acid site and C_(B)/C_(L),it suppressed the production of N_(2)O by inhibiting the production of NH species,the deep dehydrogenation of ammonia adsorption species.This study provided a simple design strategy for the catalyst to improve the low-temperature catalytic performance and N_(2)selectivity.展开更多
The synthesis process of conventional Mn-based denitrification catalysts is relatively complex and expensive.In this paper,a resource application of chlorella was proposed,and a Chlorella@Mn composite denitrification ...The synthesis process of conventional Mn-based denitrification catalysts is relatively complex and expensive.In this paper,a resource application of chlorella was proposed,and a Chlorella@Mn composite denitrification catalyst was innovatively synthesized by electrostatic interaction.The Chlorella@Mn composite denitrification catalyst prepared under the optimal conditions(0.54 g/L Mn^(2+)concentration,20 million chlorellas/mL concentration,450℃ calcination temperature)exhibited a well-developed pore structure and large specific surface area(122 m^(2)/g).Compared with MnOx alone,the Chlorella@Mn composite catalyst achieved superior performance,with~100%NH_(3)selective catalytic reduction(NH_(3)-SCR)denitrification activity at 100-225℃.The results of NH_(3)temperature-programmed desorption(NH_(3)-TPD)and H_(2)temperature-programmed reduction(H_(2)-TPR)showed that the catalyst had strong acid sites and good redox properties.Zeta potential testing showed that the electronegativity of the chlorella cell surface could be used to enrich with Mn^(2+).X-ray photoelectron spectroscopy(XPS)confirmed that Chlorella@Mn had a high content of Mn^(3+)and surface chemisorbed oxygen.In-situ diffuse refectance infrared Fourier transform spectroscopy(in-situ DRIFTS)experimental results showed that both Langmuir-Hinshelwood(L-H)and Eley-Rideal(E-R)mechanisms play a role in the denitrification process on the surface of the Chlorella@Mn catalyst,where the main intermediate nitrate species is monodentate nitrite.The presence of SO_(2)promoted the generation and strengthening of Bronsted acid sites,but also generated more sulfate species on the surface,thereby reducing the denitrification activity of the Chlorella@Mn catalyst.The Chlorella@Mn composite catalyst had the characteristics of short preparation time,simple process and low cost,making it promising for industrial application.展开更多
Metal-organic frameworks(MOFs)have favorable characteristics such as large specific surface area,high porosity,structural diversity,and pore surface modification,giving them great potential for development and attract...Metal-organic frameworks(MOFs)have favorable characteristics such as large specific surface area,high porosity,structural diversity,and pore surface modification,giving them great potential for development and attractive prospects in the research area of modern materials electrocatalysis.However,unsatisfactory catalytic activity and poor electronic conductivity are the main challenges facing MOFs.This review focuses on MOF-based materials used in electrocatalysis,based on the types of catalytic reactions that have used MOF-based materials in recent years along with their applications,and also looks at some new electrocatalytic materials and their future development prospects.展开更多
In this study,commercial V2O5-WO3/TiO2catalysts were deactivated by loading with alkali metals(K and Na).These catalysts were then regenerated by washing with either deionized water or 0.5 mol/L H2SO4(through the ultr...In this study,commercial V2O5-WO3/TiO2catalysts were deactivated by loading with alkali metals(K and Na).These catalysts were then regenerated by washing with either deionized water or 0.5 mol/L H2SO4(through the ultrasonic-assisted method).The samples used in this research were characterized by NH3-temperature programmed desorption(TPD),and X-ray photoelectron spectroscopy(XPS).Results showed that Na2O and K2O doping can poison the V2O5-WO3/TiO2catalyst and that the poisoning effect of Na2O was stronger than that of K2O.However,the Na2O-loaded sample was easier to regenerate than the K2O-loaded sample.The surfaces of catalysts can be sulfated by washing with dilute sulfuric acid because strong acid sites adhere to the catalyst surface.SO42-could also promote catalyst activity.As indicated by the NH3-TPD findings,the deposition of Na2O and K2O could also reduce the amount of desorbed ammonia and destabilize the acid sites,especially strong chemisorption sites.XPS results revealed that catalysts were deactivated by the decrease in the concentration of chemisorbed oxygen[the Oa/(Oα+Oβ)ratio].In the Na2O-doped catalyst,much chemisorbed oxygen was lost(from 28.8%to10.6%).However,the decrease in the Oa/(Oα+Oβ)ratio was less significant in the K2O-doped catalyst(from28.8%to 23.5%).Nonetheless,the binding energies of O1s broadened with respect to both high and low energy.In particular,the binding energy of chemisorbed oxygen increased from 531.5 to 531.8 eV.展开更多
Catalytic oxidation of toluene over noble metal catalysts is a representative reaction for elimination of volatile organic compounds(VOCs).However,to fully understand the activation of molecular oxygen and the role of...Catalytic oxidation of toluene over noble metal catalysts is a representative reaction for elimination of volatile organic compounds(VOCs).However,to fully understand the activation of molecular oxygen and the role of active oxygen species generated in this reaction is still a challenging target.Herein,MgO nanosheets and single-atom Pt loaded MgO(Pt SA/MgO)nanosheets were synthesized and used as catalysts in toluene oxidation.The activation process of molecular oxygen and oxidation performance on the two catalysts were contrastively investigated.The Pt SA/MgO exhibited significantly enhanced catalytic activity compared to MgO.The oxygen vacancies can be easily generated on the Pt SA/MgO surface,which facilitate the activation of molecular oxygen and the formation of active oxygen species.Based on the experimental data and theoretical calculations,an active oxygen species promoted oxidation mechanism for toluene was proposed.In the presence of H2O,the molecular oxygen is more favorable to be dissociated to generate•OH on the oxygen vacancies of the Pt SA/MgO surface,which is the dominant active oxygen species.We anticipate that this work may shed light on further investigation of t10.1007/s12274-020-2765-1he oxidation mechanism of toluene and other VOCs over noble metal catalysts.展开更多
Mn-Ni oxides with different compositions were prepared using standard co-precipitation(CP) and urea hydrolysis-precipitation(UH) methods and optimized for the selective catalytic reduction of nitrogen oxides(NOx) by N...Mn-Ni oxides with different compositions were prepared using standard co-precipitation(CP) and urea hydrolysis-precipitation(UH) methods and optimized for the selective catalytic reduction of nitrogen oxides(NOx) by NH3 at low temperature.Mn((2))Ni(1)Ox-CP and Mn(2)Ni(1)Ox-UH(with Mn:Ni molar ratio of 2:1) catalysts showed almost identical selective catalytic reduction(SCR) catalytic activity,with about 96% NOx conversion at 750 C and-99%in the temperature range from 100 to 250℃.X-ray diffraction(XRD) results showed that Mn(2)Ni(1)Ox-CP and Mn(2)Ni(1)Ox-UH catalysts crystallized in the form of Mn2NiO4 and MnO2-Mn2NiO4 spinel,respectively.The latter gave relatively good selectivity to N2,which might be due to the presence of the MnO2 phase and high metal-O binding energy,resulting in low dehydrogenation ability.According to the results of various characterization methods,it was found that a high density of surface chemisorbed oxygen species and efficient electron transfer between Mn and Ni in the crystal structure of Mn2NiO4 spinel played important roles in the high-efficiency SCR activity of these catalysts.Mn(2)Ni(1)Ox catalysts presented good resistance to H2O or/and SO2 with stable activity,which benefited from the Mn2NiO4 spinel structure and Eley-Rideal mechanism,with only slight effects from SO2.展开更多
As the main contributor of the formation of particulate matter as well as ozone, volatile organic compounds(VOCs) greatly affect human health and the environmental quality. Catalytic combustion/oxidation has been view...As the main contributor of the formation of particulate matter as well as ozone, volatile organic compounds(VOCs) greatly affect human health and the environmental quality. Catalytic combustion/oxidation has been viewed as an efficient, economically feasible and environmentally friendly way for the elimination of VOCs. Supported metal catalyst is the preferred type of catalysts applied for VOCs catalytic combustion because of the synergy between active components and support as well as its flexibility in the composition. The presence of support not only plays the role of keeping the catalyst with good stability and mechanical strength, but also provides a large specific surface for the good dispersion of active components, which could effectively improve the performance of catalyst as well as decrease the usage of active components, especially the noble metal amount. Mesoporous molecular sieves, owing to their large surface area, unique porous structures, large pore size as well as uniform pore-size distribution, were viewed as superior support for dispersing active components. This review focuses on the recent development of mesoporous molecular sieve supported metal catalysts and their application in catalytic oxidation of VOCs. The effect of active component types, support structure, preparation method, precursors, etc. on the valence state, dispersion as well as the loading of active species were also discussed and summarized. Moreover, the corresponding conversion route of VOCs was also addressed.This review aims to provide some enlightment for designing the supported metal catalysts with superior activity and stability for VOCs removal.展开更多
Air quality model can be an adequate tool for future air quality prediction, also atmospheric observations supporting and emission control strategies responders. The influence of emission control policy (emission red...Air quality model can be an adequate tool for future air quality prediction, also atmospheric observations supporting and emission control strategies responders. The influence of emission control policy (emission reduction targets in the national "China's 12th Five-Year Plan (2011-2015)") on the air quality in the near future over an important industrial city of China, Xuanwei in Yunnan Province, was studied by applying the AERMOD modeling system. First, our analysis demonstrated that the AERMOD modeling system could be used in the air quality simulation in the near future for SO2 and NOx under average meteorology but not for PM10. Second, after evaluating the simulation results in 2008 and 2015, ambient concentration of SO2, NOx and PM10 (only 2008) were all centered in the middle of simulation area where the emission sources concentrated, and it is probably because the air pollutions were source oriented. Last but not least, a better air quality condition will happen under the hypothesis that the average meteorological data can be used in near future simulation. However, there are still heavy polluted areas where ambient concentrations will exceed the air quality standard in near future. In spatial allocation, reduction effect of SO2 is more significant than NOx in 2015 as the contribution of SO2 from industry is more than NOx. These results inspired the regulatory applications of AERMOD modeling system in evaluating environmental pollutant control policy展开更多
NH_(3)-SCR performances were explored to the relationship between structure morphology and physio-chemical properties over low-dimensional ternary Mn-based catalysts prepared by one-step synthesis method.Due to its st...NH_(3)-SCR performances were explored to the relationship between structure morphology and physio-chemical properties over low-dimensional ternary Mn-based catalysts prepared by one-step synthesis method.Due to its strong oxidation performance,Sn-MnO_(x) was prone to side reactions between NO,NH_(3)and O_(2),resulting in the generation of more NO_(2)and N_(2)O,here most of N_(2)O was driven from the non-selective oxidation of NH_(3),while a small part generated from the side reaction between NH_(3)and NO_(2).Co or Ni doping into Sn-MnO_(x) as solid solution components obviously stronged the electronic interaction for actively mobilization and weakened the oxidation performance for signally reducing the selective tendency of side reactions to N_(2)O.The optimal modification resulted in improving the surface area and enhancing the strong interaction between polyvalent cations in Co/Ni-Mn-SnO_(2)to provide more surface adsorbed oxygen,active sites of Mn^(3+) and Mn^(4+),high-content Sn^(4+) and plentiful Lewis-acidity for more active intermediates,which significantly broadened the activity window of Sn-MnOx,improved the N^(2) selectivity by inhibiting N_(2)O formation,and also contributed to an acceptable resistances to water and sulfur.At low reaction temperatures,the SCR reactions over three catalysts mainly obeyed the typical Elye-rideal(E-R)routs via the reactions of adsorbed L-NH_(x)(x=3,2,1)and B-NH_(4)^(+) with the gaseous NO to generate N_(2) but also N_(2)O by-products.Except for the above basic E-R reactions,as increasing the reaction temperature,the main adsorbed NO_(x)-species were bidentate nitrates that were also active in the Langmuir-Hinshelwood reactions with adsorbed L-NH_(x) species over Co/Ni modified Mn-SnO_(2) catalyst.展开更多
This study explored the superior citrate method(CM)to synthesize Mn-Ce bi-oxides on 3 D monolithic Ni-foam(NF)catalysts for the selective catalytic reduction of NO by NH_(3)(NH_(3)-SCR).The 17 wt%Mn(7)Ce(3)O_(x)/NF(CM...This study explored the superior citrate method(CM)to synthesize Mn-Ce bi-oxides on 3 D monolithic Ni-foam(NF)catalysts for the selective catalytic reduction of NO by NH_(3)(NH_(3)-SCR).The 17 wt%Mn(7)Ce(3)O_(x)/NF(CM-17)catalyst shows the NO_(x)conversion of 98.7%at 175℃and 90%in the presence of 10 vol%H2 O.It is revealed that the combination of surface-active oxygen(formed by high-level oxygen vacancies)and strongly oxidized Mn4+species promots the Fast-SCR reactions,in which Mn4+species play a leading role in NH_(3)-SCR reaction,and the unsaturated Ni atoms and also Ce3+species promote electron exchange and thus improve the redox performance.The coexistence mechanisms of Fast-SCR reactions and E-R pathways are observed over Mn-CeO_(x)/NF catalyst,which may be promoted by the Br?nsted sites at low temperature.In addition,the heat resistance,stability,3 D monolithic porous structure and excellent physical properties of foam nickel provide a unique growth substrates for catalysts preparation and reaction sites for NO_(x)purification.Therefore,industrial application of Mn-Ce bioxides loaded on 3 D monolithic is proposed to be achieved through reasonable preparation methods.展开更多
Cu-Co multiple-oxides modified on HNO_3-pretreated activated coke(AC_(N))were optimized for the simultaneous removal of gaseous CO and elemental mercury(Hg^(0))at low temperature(<200℃).It was found that 2%CuOx-10...Cu-Co multiple-oxides modified on HNO_3-pretreated activated coke(AC_(N))were optimized for the simultaneous removal of gaseous CO and elemental mercury(Hg^(0))at low temperature(<200℃).It was found that 2%CuOx-10%CoOx/AC_(N)catalyst calcined at 400℃resulted in the coexistence of complex oxides including CuO,Cu_2 O,Co_(3)O_(4,Co_(2)O_(3)and CoO phases,which might be good for the simultaneous catalytic oxidation of CO by Co-species and removal of Hg^(0)by Cu-species,benefiting from the synergistic catalysis during the electrointeraction between Go and Cu cations(CoO■Co_(3)O_(4)and Cu_(2)O■CuO).The catalysis removal of CO oxidation was obviously depended on the reaction temperature obtaining94.7%at 200℃,while no obvious promoting effect on the Hg^(0)removal(68.3%-78.7%).These materials were very substitute for the removal of CO and Hg^(0)from the flue gas with the conditions of 8-20 vol.%O_(2)and flue-gas temperature below 200℃.The removal of Hg^(0)followed the combination processes of adsorption and catalytic oxidation reaction via LangmuirHinshelwood mechanism,while the catalysis of CO abided by the Mars-van Krevelen mechanism with lattice oxygen species.展开更多
Achieving high catalytic performance with lower possible cost and higher energetic efficiency is critical for catalytic oxidation of volatile organic compounds(VOCs).However,traditional thermocatalysts generally under...Achieving high catalytic performance with lower possible cost and higher energetic efficiency is critical for catalytic oxidation of volatile organic compounds(VOCs).However,traditional thermocatalysts generally undergo low catalytic activity and fewer active sites.Herein,this paper synthesizes nearly all-surface-atomic,ultrathin two-dimensional(2D)Co_(3)O_(4) nanosheets to address these problems through offering a numerous active sites and high electron mobility.The 2D Co_(3)O_(4) nanosheets(1.70 nm)exhibit catalyzation to the total oxidation of n-hexanal at the lower temperature of r90%=202℃,and at the space velocity of 5.0×10^(4) h^(-1).It is over 1.2 and 6 times higher catalytic activity than that of 2D CoO nanosheets(1.71 nm)and bulk Co_(3)O_(4) counterpart,respectively.Transient absorption spectroscopy analysis shows that the oxygen vacancy defect traps electrons,thereby preventing the recombination with holes,increasing the lifetime of electrons,and making electron-holes reach a nondynamic equilibrium.The longer the electron lifetime is,the easier the oxygen vacancy defects capture electrons.Furthermore,the defects combine with oxygen to form active oxygen components.Compared with the lattice oxygen involved in the reaction of bulk Co_(3)O_(4),the nanosheets change the catalytic reaction path,which effectively reduces the activation energy barrier from 34.07 to 27.15 kJ/mol.The changed surface disorder,the numerous coordinatively-unsaturated Co atoms and the high ratio of O_(ads)/O_(lat) on the surface of 2D Co_(3)O_(4) nanosheets are responsible for the catalytic performance.展开更多
Mn-Si-MEL zeolite was developed as a bi-functional adsorption-catalytic oxidation material for volatile organic compounds(VOCs)elimination due to its good hydrophobicity&good organophileproperty brought by the sub...Mn-Si-MEL zeolite was developed as a bi-functional adsorption-catalytic oxidation material for volatile organic compounds(VOCs)elimination due to its good hydrophobicity&good organophileproperty brought by the substitution of Mn for Al in zeolite and the superior catalytic oxidation property endowed by the existence of Mn species.Various Mn-Si-MEL samples were obtained by introducing Mn to MEL crystallization system via different ways.It was found the incorporated Mn ways have a significant effect on the behavior of Mn being involved in the crystallization of MEL and finally influenced the distribution of Mn in zeolite as well the physicochemical properties of product zeolite.The seeding method(MnS2(Seed))is favorable for the good incorporation and uniform distribution of Mn in zeolite while both recrystallization method(Mn-S2(RC))and direct synthesis method(Mn-S2(DH))are favorable for obtaining more reducible Mn species and surface adsorbed oxygen species.The Mn amount incorporated into zeolite follows Mn-S2(RC)(1.96 wt%)>Mn-S2(Seed)(1.07 wt%)≈Mn-S2(DH)(0.97 wt%),the adsorption capacity of various samples follows Mn-S2(Seed)(83.3μmol/g)≈Mn-S2(RC)(82.1μmol/g)>Mn-S2(DH)(76.1μmol/g),while the catalytic oxidation ability of three samples follows Mn-S2(RC)≈Mn-S2(DH)>Mn-S2(Seed).Furthermore,Mn-S2(RC)which exhibits both superior adsorption capacity and catalytic oxidation ability shows good hydrophobicity and superior recyclability,demonstrating its great potential to be applied in the VOCs elimination by an enrichment-degradation route.展开更多
Ce1-xZrxO_(2) composite oxides(molar,x=0-1.0,interval of 0.2)were prepared by a cetyltrimethylammonium bromide-assisted precipitation method.The enhancement of silver-species modification and catalytic mechanism of ad...Ce1-xZrxO_(2) composite oxides(molar,x=0-1.0,interval of 0.2)were prepared by a cetyltrimethylammonium bromide-assisted precipitation method.The enhancement of silver-species modification and catalytic mechanism of adsorption-transformationdesorption process were investigated over the Ag-impregnated catalysts for lowtemperature selective catalytic oxidation of ammonia(NH_(3)-SCO).The optimal 5 wt.%Ag/Ce_(0.6)Zr_(0.4)O_(2) catalyst presented good NH_(3)-SCO performancewith>90% NH_(3) conversion at temperature(T)≥250°C and 89% N_(2) selectivity.Despite the irregular block shape and underdeveloped specific surface area(∼60m2/g),the naked and Ag-modified Ce_(0.6)Zr_(0.4)O_(2) solid solution still obtained highly dispersed distribution of surface elements analyzed by scanning electron microscope-energy dispersive spectrometer(SEM-EDS)(mapping),N_(2) adsorptiondesorption test and X-ray diffraction(XRD).H2 temperature programmed reduction(H2-TPR)and X-ray photoelectron spectroscopy(XPS)results indicated that Ag-modification enhanced the mobility and activation of oxygen-species leading to a promotion on CeO_(2) reducibility and synergistic Ag0/Ag+and Ce^(4+)/Ce^(3+)redox cycles.Besides,Ag+/Ag_(2)O clusters could facilitate the formation of surface oxygen vacancies that was beneficial to the adsorption and activation of ammonia.NH3-temperature programmed desorption(NH_(3)-TPD)showed more adsorption-desorption capacity to ammoniawere provided by physical,weakandmedium-strong acid sites.Diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)experiments revealed the activation of ammonia might be the control step of NH3-SCO procedure,during which NH3 dehydrogenation derived from NHx-species and also internal selective catalytic reduction(i-SCR)reactions were proposed.展开更多
Energy-saving and efficient monolithic catalysts are hotspots of catalytic purification of industrial gaseous pollutants.Here,we have developed an electrothermal catalytic mode,in which the ignition temperature requir...Energy-saving and efficient monolithic catalysts are hotspots of catalytic purification of industrial gaseous pollutants.Here,we have developed an electrothermal catalytic mode,in which the ignition temperature required for the reaction is provided by Joule heat generated when the current flows through the catalyst.In this paper,Mn/NiAl/NF,Mn/NiFe/NF and Mn/NF metal-based monolithic catalysts were prepared using nickel foam (NF) as the carrier for thermal and electrothermal catalysis of n-heptane.The results indicated that Mn-based monolithic catalysts exhibit high activity in thermal and electrothermal catalysis.Mn/NiFe/NF achieve conversion of n-heptane more than 99%in electrothermal catalysis under a direct-current (DC) power of 6 W,and energy-saving is 54% compared with thermal catalysis.In addition,the results indicated that the introduction of NiAl (or NiFe) greatly enhanced the catalytic activity of Mn/NF,which attributed to the higher specific surface area,Mn3+/Mn4+,Ni3+/Ni^(2+),adsorbed oxygen species (Oads)/lattice oxygen species (Olatt),redox performance of the catalyst.Electrothermal catalytic activity was significantly higher than thermal catalytic activity before complete conversion,which may be related to electronic effects.Besides,Mn/NiFe/NF has good cyclic and long-term stability in electrothermal catalysis.This paper provided a theoretical basis for applying electrothermal catalysis in the field of VOCs elimination.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(FRF-EYIT-23-07)。
文摘Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption and waste gas emissions.To address this,electrocatalytic nitric oxide reduction reaction(NORR)has emerged as a promising strategy to bridge NH3consumption to NH3production,harnessing renewable electricity for a sustainable future.Copper(Cu)stands out as a prominent electrocatalyst for NO reduction,given its exceptional NH3yield and selectivity.However,a crucial aspect that remains insufficiently explored is the effects of morphology and valence states of Cu on the NORR performance.In this investigation,we synthesized CuO nanowires(CuO-NF)and Cu nanocubes(Cu-NF)as cathodes through an in situ growth method.Remarkably,CuO-NF exhibited an impressive NH3yield of 0.50±0.02 mg cm^(-2)h^(-1)at-0.6 V vs.reversible hydrogen electrode(RHE)with faradaic efficiency of29,68%±1,35%,surpassing that of Cu-NF(0.17±0.01 mg cm^(-2)h^(-1),16.18%±1.40%).Throughout the electroreduction process,secondary cubes were generated on the CuO-NF surface,preserving their nanosheet cluster morphology,sustained by an abundant supply of subsurface oxygen(s-O)even after an extended duration of 10 h,until s-O depletion ensued.Conversely,Cu-NF exhibited inadequate s-O content,leading to rapid crystal collapse within the same timeframe.The distinctive current-potential relationship,akin to a volcano-type curve,was attributed to distinct NO hydrogenation mechanisms.Further Tafel analysis revealed the exchange current density(i0)and standard heterogeneous rate constant(k0)for CuO-NF,yielding 3.44×10^(-6)A cm^(-2)and 3.77×10^(-6)cm^(-2)s^(-1)when NORR was driven by overpotentials.These findings revealed the potential of CuO-NF for NO reduction and provided insights into the intricate interplay between crystal morphology,valence states,and electrochemical performance.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.
基金supported by the Ministry of Environmental Protection,Public Welfare Project(Contract No 201109034)the National Natural Science Foundation(U1137603)
文摘In this work, a series of coal-based active carbon (CAC) catalysts loaded by A1203 were prepared by sol-gel method and used for the simulta- neous catalytic hydrolysis of carbonyl sulfide (COS) and carbon disulfide (CS2) at relatively low temperatures of 30-70 ℃. The influences of calcinations temperatures and operation conditions such as: reaction temperature, 02 concentration, gas hourly space velocity (GHSV) and relative humidity (RH) were also discussed respectively. The results showed that catalysts with 5.0 wt% A1203 calcined at 300 ℃ had supe- rior activity for the simultaneous catalytic hydrolysis of COS and CS2. When the reaction temperature was above 50 ℃, catalytic hydrolysis activity of COS could be enhanced but that of CS2 was inhibited. Too high RH could make the catalytic hydrolysis activities of COS and CS2 decrease. A small amount of 02 introduction could enhance the simultaneous catalytic hydrolysis activities of COS and CS2.
基金supported by the Program for New Century Excellent Talents in University(NCET-12-0776)the National Natural Science Foundation of China(21507004)the Fundamental Research Funds for the Central Universities(FRF-TP-15-046A1)
文摘This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso-and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated,and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process.
基金supported by the National Natural Science Foundation of China(No.U20A20130 and 21806009)the Fundamental Research Funds for the Central Universities(No.FRF-IDRY-19-020)。
文摘In this work,the phosphomolybdate(HPMo)modification strategy was applied to improve the N_(2) selectivity of Mn Co-BTC@SiO_(2)catalyst for the selective catalytic reduction of NO_(x),and further,the mechanism of HPMo modification on enhanced catalytic performance was explored.Among Mn Co-BTC@SiO_(2-x) catalysts with different HPMo concentrations,Mn CoBTC@SiO_(2)-0.75 catalyst exhibited not only the highest NH_(3)-SCR performance(95% at 200-300℃)but also the best N_(2)selectivity(exceed 80% at 100-300℃)due to the appropriate redox capacity,greater surface acidity.X-ray photoelectron spectrometer(XPS)and temperature programmed reduction of H_(2)(H_(2)-TPR)results showed that the modification with HPMo reduced the oxidation-reduction performance of the catalyst due to electron transfer from Mo^(5+)to Mn^(4+)/Mn^(3+)and prevent the excessive oxidation of ammonia adsorption species.NH_(3)temperature-programmed desorption of(NH_(3)-TPD)results showed that the modification with HPMo could significantly improve the surface acidity and NH_(3)adsorption,which enhance the catalytic activity and N_(2)selectivity.In-situ diffused reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS)revealed that modification with HPMo increased significantly the amount of adsorbed NH_(3)species on the Bronsted acid site and C_(B)/C_(L),it suppressed the production of N_(2)O by inhibiting the production of NH species,the deep dehydrogenation of ammonia adsorption species.This study provided a simple design strategy for the catalyst to improve the low-temperature catalytic performance and N_(2)selectivity.
基金supported by the National Natural Science Foundation of China (No.U20A20130)the Fundamental Research Funds for the Central Universities (No.FRF-TP-20-03B)。
文摘The synthesis process of conventional Mn-based denitrification catalysts is relatively complex and expensive.In this paper,a resource application of chlorella was proposed,and a Chlorella@Mn composite denitrification catalyst was innovatively synthesized by electrostatic interaction.The Chlorella@Mn composite denitrification catalyst prepared under the optimal conditions(0.54 g/L Mn^(2+)concentration,20 million chlorellas/mL concentration,450℃ calcination temperature)exhibited a well-developed pore structure and large specific surface area(122 m^(2)/g).Compared with MnOx alone,the Chlorella@Mn composite catalyst achieved superior performance,with~100%NH_(3)selective catalytic reduction(NH_(3)-SCR)denitrification activity at 100-225℃.The results of NH_(3)temperature-programmed desorption(NH_(3)-TPD)and H_(2)temperature-programmed reduction(H_(2)-TPR)showed that the catalyst had strong acid sites and good redox properties.Zeta potential testing showed that the electronegativity of the chlorella cell surface could be used to enrich with Mn^(2+).X-ray photoelectron spectroscopy(XPS)confirmed that Chlorella@Mn had a high content of Mn^(3+)and surface chemisorbed oxygen.In-situ diffuse refectance infrared Fourier transform spectroscopy(in-situ DRIFTS)experimental results showed that both Langmuir-Hinshelwood(L-H)and Eley-Rideal(E-R)mechanisms play a role in the denitrification process on the surface of the Chlorella@Mn catalyst,where the main intermediate nitrate species is monodentate nitrite.The presence of SO_(2)promoted the generation and strengthening of Bronsted acid sites,but also generated more sulfate species on the surface,thereby reducing the denitrification activity of the Chlorella@Mn catalyst.The Chlorella@Mn composite catalyst had the characteristics of short preparation time,simple process and low cost,making it promising for industrial application.
基金financially supported by the National Natural Science Foundation of China(Nos.21677010,51808037)the National Key R&D Program of China(No.2021YFB3500702)the Special Fund of Beijing Key Laboratory of Indoor Air Quality Evaluation and Control(No.BZ0344KF21-04)。
文摘Metal-organic frameworks(MOFs)have favorable characteristics such as large specific surface area,high porosity,structural diversity,and pore surface modification,giving them great potential for development and attractive prospects in the research area of modern materials electrocatalysis.However,unsatisfactory catalytic activity and poor electronic conductivity are the main challenges facing MOFs.This review focuses on MOF-based materials used in electrocatalysis,based on the types of catalytic reactions that have used MOF-based materials in recent years along with their applications,and also looks at some new electrocatalytic materials and their future development prospects.
基金supported by the National Natural Science Foundation of China (21177051)the Fundamental Research Funds for the Central Universities (06101047)Program for New Century Excellent Talents in University (NECT-13-0667)
文摘In this study,commercial V2O5-WO3/TiO2catalysts were deactivated by loading with alkali metals(K and Na).These catalysts were then regenerated by washing with either deionized water or 0.5 mol/L H2SO4(through the ultrasonic-assisted method).The samples used in this research were characterized by NH3-temperature programmed desorption(TPD),and X-ray photoelectron spectroscopy(XPS).Results showed that Na2O and K2O doping can poison the V2O5-WO3/TiO2catalyst and that the poisoning effect of Na2O was stronger than that of K2O.However,the Na2O-loaded sample was easier to regenerate than the K2O-loaded sample.The surfaces of catalysts can be sulfated by washing with dilute sulfuric acid because strong acid sites adhere to the catalyst surface.SO42-could also promote catalyst activity.As indicated by the NH3-TPD findings,the deposition of Na2O and K2O could also reduce the amount of desorbed ammonia and destabilize the acid sites,especially strong chemisorption sites.XPS results revealed that catalysts were deactivated by the decrease in the concentration of chemisorbed oxygen[the Oa/(Oα+Oβ)ratio].In the Na2O-doped catalyst,much chemisorbed oxygen was lost(from 28.8%to10.6%).However,the decrease in the Oa/(Oα+Oβ)ratio was less significant in the K2O-doped catalyst(from28.8%to 23.5%).Nonetheless,the binding energies of O1s broadened with respect to both high and low energy.In particular,the binding energy of chemisorbed oxygen increased from 531.5 to 531.8 eV.
基金This work was financially supported by National Natural Science Foundation of China (Nos. 51808037, 21601136 and 21876010)the Science & Technology Development Fund of Tianjin Education Commission for Higher Education (No. 2018KJ126)the Fundamental Research Funds for the Central Universities (No. FRF-TP-16-060A1).
文摘Catalytic oxidation of toluene over noble metal catalysts is a representative reaction for elimination of volatile organic compounds(VOCs).However,to fully understand the activation of molecular oxygen and the role of active oxygen species generated in this reaction is still a challenging target.Herein,MgO nanosheets and single-atom Pt loaded MgO(Pt SA/MgO)nanosheets were synthesized and used as catalysts in toluene oxidation.The activation process of molecular oxygen and oxidation performance on the two catalysts were contrastively investigated.The Pt SA/MgO exhibited significantly enhanced catalytic activity compared to MgO.The oxygen vacancies can be easily generated on the Pt SA/MgO surface,which facilitate the activation of molecular oxygen and the formation of active oxygen species.Based on the experimental data and theoretical calculations,an active oxygen species promoted oxidation mechanism for toluene was proposed.In the presence of H2O,the molecular oxygen is more favorable to be dissociated to generate•OH on the oxygen vacancies of the Pt SA/MgO surface,which is the dominant active oxygen species.We anticipate that this work may shed light on further investigation of t10.1007/s12274-020-2765-1he oxidation mechanism of toluene and other VOCs over noble metal catalysts.
基金financially supported by the National Key R&D Program of China (No.2017YFC0210303)National Natural Science Foundation of China (Nos.21806009 and 21677010)+1 种基金China Postdoctoral Science Foundation (Nos.2019T120049 and 2018M631344)Fundamental Research Funds for the Central Universities (No.FRF-TP-18-019A1).
文摘Mn-Ni oxides with different compositions were prepared using standard co-precipitation(CP) and urea hydrolysis-precipitation(UH) methods and optimized for the selective catalytic reduction of nitrogen oxides(NOx) by NH3 at low temperature.Mn((2))Ni(1)Ox-CP and Mn(2)Ni(1)Ox-UH(with Mn:Ni molar ratio of 2:1) catalysts showed almost identical selective catalytic reduction(SCR) catalytic activity,with about 96% NOx conversion at 750 C and-99%in the temperature range from 100 to 250℃.X-ray diffraction(XRD) results showed that Mn(2)Ni(1)Ox-CP and Mn(2)Ni(1)Ox-UH catalysts crystallized in the form of Mn2NiO4 and MnO2-Mn2NiO4 spinel,respectively.The latter gave relatively good selectivity to N2,which might be due to the presence of the MnO2 phase and high metal-O binding energy,resulting in low dehydrogenation ability.According to the results of various characterization methods,it was found that a high density of surface chemisorbed oxygen species and efficient electron transfer between Mn and Ni in the crystal structure of Mn2NiO4 spinel played important roles in the high-efficiency SCR activity of these catalysts.Mn(2)Ni(1)Ox catalysts presented good resistance to H2O or/and SO2 with stable activity,which benefited from the Mn2NiO4 spinel structure and Eley-Rideal mechanism,with only slight effects from SO2.
基金supported by the Open Research Fund Program of State Environmental Protection Key Laboratory of Food Chain Pollution Control (No. FC_(2)021YB05)the Opening Fund of State Key Laboratory of Heavy Oil Processing (No. SKLOP202002001)+1 种基金Fundamental Research Funds for the Central Universities (No. FRF-IDRY-20-004)National Natural Science Foundation of China (No. U20A20130)。
文摘As the main contributor of the formation of particulate matter as well as ozone, volatile organic compounds(VOCs) greatly affect human health and the environmental quality. Catalytic combustion/oxidation has been viewed as an efficient, economically feasible and environmentally friendly way for the elimination of VOCs. Supported metal catalyst is the preferred type of catalysts applied for VOCs catalytic combustion because of the synergy between active components and support as well as its flexibility in the composition. The presence of support not only plays the role of keeping the catalyst with good stability and mechanical strength, but also provides a large specific surface for the good dispersion of active components, which could effectively improve the performance of catalyst as well as decrease the usage of active components, especially the noble metal amount. Mesoporous molecular sieves, owing to their large surface area, unique porous structures, large pore size as well as uniform pore-size distribution, were viewed as superior support for dispersing active components. This review focuses on the recent development of mesoporous molecular sieve supported metal catalysts and their application in catalytic oxidation of VOCs. The effect of active component types, support structure, preparation method, precursors, etc. on the valence state, dispersion as well as the loading of active species were also discussed and summarized. Moreover, the corresponding conversion route of VOCs was also addressed.This review aims to provide some enlightment for designing the supported metal catalysts with superior activity and stability for VOCs removal.
基金supported by the special research projects of Yunnan Provincial Environmental Protection Bureau(No. KKK0201022137, KKK0201122183)
文摘Air quality model can be an adequate tool for future air quality prediction, also atmospheric observations supporting and emission control strategies responders. The influence of emission control policy (emission reduction targets in the national "China's 12th Five-Year Plan (2011-2015)") on the air quality in the near future over an important industrial city of China, Xuanwei in Yunnan Province, was studied by applying the AERMOD modeling system. First, our analysis demonstrated that the AERMOD modeling system could be used in the air quality simulation in the near future for SO2 and NOx under average meteorology but not for PM10. Second, after evaluating the simulation results in 2008 and 2015, ambient concentration of SO2, NOx and PM10 (only 2008) were all centered in the middle of simulation area where the emission sources concentrated, and it is probably because the air pollutions were source oriented. Last but not least, a better air quality condition will happen under the hypothesis that the average meteorological data can be used in near future simulation. However, there are still heavy polluted areas where ambient concentrations will exceed the air quality standard in near future. In spatial allocation, reduction effect of SO2 is more significant than NOx in 2015 as the contribution of SO2 from industry is more than NOx. These results inspired the regulatory applications of AERMOD modeling system in evaluating environmental pollutant control policy
基金financially supported by National Natural Science Foundation of China (Nos. U20A20130, 21806009)China Postdoctoral Science Foundation (2019T120049)Fundamental Research Funds for the Central Universities (No. 06500152).
文摘NH_(3)-SCR performances were explored to the relationship between structure morphology and physio-chemical properties over low-dimensional ternary Mn-based catalysts prepared by one-step synthesis method.Due to its strong oxidation performance,Sn-MnO_(x) was prone to side reactions between NO,NH_(3)and O_(2),resulting in the generation of more NO_(2)and N_(2)O,here most of N_(2)O was driven from the non-selective oxidation of NH_(3),while a small part generated from the side reaction between NH_(3)and NO_(2).Co or Ni doping into Sn-MnO_(x) as solid solution components obviously stronged the electronic interaction for actively mobilization and weakened the oxidation performance for signally reducing the selective tendency of side reactions to N_(2)O.The optimal modification resulted in improving the surface area and enhancing the strong interaction between polyvalent cations in Co/Ni-Mn-SnO_(2)to provide more surface adsorbed oxygen,active sites of Mn^(3+) and Mn^(4+),high-content Sn^(4+) and plentiful Lewis-acidity for more active intermediates,which significantly broadened the activity window of Sn-MnOx,improved the N^(2) selectivity by inhibiting N_(2)O formation,and also contributed to an acceptable resistances to water and sulfur.At low reaction temperatures,the SCR reactions over three catalysts mainly obeyed the typical Elye-rideal(E-R)routs via the reactions of adsorbed L-NH_(x)(x=3,2,1)and B-NH_(4)^(+) with the gaseous NO to generate N_(2) but also N_(2)O by-products.Except for the above basic E-R reactions,as increasing the reaction temperature,the main adsorbed NO_(x)-species were bidentate nitrates that were also active in the Langmuir-Hinshelwood reactions with adsorbed L-NH_(x) species over Co/Ni modified Mn-SnO_(2) catalyst.
基金Project supported by the National Key R&D Program of China(2017YFC0210303)National Natural Science Foundation of China(21806009)+1 种基金China Postdoctoral Science Foundation(2019T120049)Fundamental Research Funds for the Central Universities(06500152,FRF-TP-18-019A1)。
文摘This study explored the superior citrate method(CM)to synthesize Mn-Ce bi-oxides on 3 D monolithic Ni-foam(NF)catalysts for the selective catalytic reduction of NO by NH_(3)(NH_(3)-SCR).The 17 wt%Mn(7)Ce(3)O_(x)/NF(CM-17)catalyst shows the NO_(x)conversion of 98.7%at 175℃and 90%in the presence of 10 vol%H2 O.It is revealed that the combination of surface-active oxygen(formed by high-level oxygen vacancies)and strongly oxidized Mn4+species promots the Fast-SCR reactions,in which Mn4+species play a leading role in NH_(3)-SCR reaction,and the unsaturated Ni atoms and also Ce3+species promote electron exchange and thus improve the redox performance.The coexistence mechanisms of Fast-SCR reactions and E-R pathways are observed over Mn-CeO_(x)/NF catalyst,which may be promoted by the Br?nsted sites at low temperature.In addition,the heat resistance,stability,3 D monolithic porous structure and excellent physical properties of foam nickel provide a unique growth substrates for catalysts preparation and reaction sites for NO_(x)purification.Therefore,industrial application of Mn-Ce bioxides loaded on 3 D monolithic is proposed to be achieved through reasonable preparation methods.
基金financially supported by the National Key R&D Program of China(No.2017YFC0210303)the National Natural Science Foundation of China(Nos.21806009,21677010)+1 种基金the China Postdoctoral Science Foundation(No.2018M631344)。
文摘Cu-Co multiple-oxides modified on HNO_3-pretreated activated coke(AC_(N))were optimized for the simultaneous removal of gaseous CO and elemental mercury(Hg^(0))at low temperature(<200℃).It was found that 2%CuOx-10%CoOx/AC_(N)catalyst calcined at 400℃resulted in the coexistence of complex oxides including CuO,Cu_2 O,Co_(3)O_(4,Co_(2)O_(3)and CoO phases,which might be good for the simultaneous catalytic oxidation of CO by Co-species and removal of Hg^(0)by Cu-species,benefiting from the synergistic catalysis during the electrointeraction between Go and Cu cations(CoO■Co_(3)O_(4)and Cu_(2)O■CuO).The catalysis removal of CO oxidation was obviously depended on the reaction temperature obtaining94.7%at 200℃,while no obvious promoting effect on the Hg^(0)removal(68.3%-78.7%).These materials were very substitute for the removal of CO and Hg^(0)from the flue gas with the conditions of 8-20 vol.%O_(2)and flue-gas temperature below 200℃.The removal of Hg^(0)followed the combination processes of adsorption and catalytic oxidation reaction via LangmuirHinshelwood mechanism,while the catalysis of CO abided by the Mars-van Krevelen mechanism with lattice oxygen species.
基金supported by National Natural Science Foundation of China(Nos.51808037,21601136,and 21876010)Fundamental Research Funds for the Central Universities(No.FRF-TP-16-060A1)Natural Science Foundation of Guangdong Province(No.2020A1515011197).
文摘Achieving high catalytic performance with lower possible cost and higher energetic efficiency is critical for catalytic oxidation of volatile organic compounds(VOCs).However,traditional thermocatalysts generally undergo low catalytic activity and fewer active sites.Herein,this paper synthesizes nearly all-surface-atomic,ultrathin two-dimensional(2D)Co_(3)O_(4) nanosheets to address these problems through offering a numerous active sites and high electron mobility.The 2D Co_(3)O_(4) nanosheets(1.70 nm)exhibit catalyzation to the total oxidation of n-hexanal at the lower temperature of r90%=202℃,and at the space velocity of 5.0×10^(4) h^(-1).It is over 1.2 and 6 times higher catalytic activity than that of 2D CoO nanosheets(1.71 nm)and bulk Co_(3)O_(4) counterpart,respectively.Transient absorption spectroscopy analysis shows that the oxygen vacancy defect traps electrons,thereby preventing the recombination with holes,increasing the lifetime of electrons,and making electron-holes reach a nondynamic equilibrium.The longer the electron lifetime is,the easier the oxygen vacancy defects capture electrons.Furthermore,the defects combine with oxygen to form active oxygen components.Compared with the lattice oxygen involved in the reaction of bulk Co_(3)O_(4),the nanosheets change the catalytic reaction path,which effectively reduces the activation energy barrier from 34.07 to 27.15 kJ/mol.The changed surface disorder,the numerous coordinatively-unsaturated Co atoms and the high ratio of O_(ads)/O_(lat) on the surface of 2D Co_(3)O_(4) nanosheets are responsible for the catalytic performance.
基金the finance supported by the Opening Fund of State Key Laboratory of Heavy Oil Processing(No.SKLOP202002001)the Program for Fundamental Research Funds for the Central Universities(No.FRF-AT-20-12)National Natural Science Foundation of China(No.U20A20130).
文摘Mn-Si-MEL zeolite was developed as a bi-functional adsorption-catalytic oxidation material for volatile organic compounds(VOCs)elimination due to its good hydrophobicity&good organophileproperty brought by the substitution of Mn for Al in zeolite and the superior catalytic oxidation property endowed by the existence of Mn species.Various Mn-Si-MEL samples were obtained by introducing Mn to MEL crystallization system via different ways.It was found the incorporated Mn ways have a significant effect on the behavior of Mn being involved in the crystallization of MEL and finally influenced the distribution of Mn in zeolite as well the physicochemical properties of product zeolite.The seeding method(MnS2(Seed))is favorable for the good incorporation and uniform distribution of Mn in zeolite while both recrystallization method(Mn-S2(RC))and direct synthesis method(Mn-S2(DH))are favorable for obtaining more reducible Mn species and surface adsorbed oxygen species.The Mn amount incorporated into zeolite follows Mn-S2(RC)(1.96 wt%)>Mn-S2(Seed)(1.07 wt%)≈Mn-S2(DH)(0.97 wt%),the adsorption capacity of various samples follows Mn-S2(Seed)(83.3μmol/g)≈Mn-S2(RC)(82.1μmol/g)>Mn-S2(DH)(76.1μmol/g),while the catalytic oxidation ability of three samples follows Mn-S2(RC)≈Mn-S2(DH)>Mn-S2(Seed).Furthermore,Mn-S2(RC)which exhibits both superior adsorption capacity and catalytic oxidation ability shows good hydrophobicity and superior recyclability,demonstrating its great potential to be applied in the VOCs elimination by an enrichment-degradation route.
基金financially supported by National Natural Science Foundation of China (No.U20A20130)Fundamental Research Funds for the Central Universities (No.06500152)
文摘Ce1-xZrxO_(2) composite oxides(molar,x=0-1.0,interval of 0.2)were prepared by a cetyltrimethylammonium bromide-assisted precipitation method.The enhancement of silver-species modification and catalytic mechanism of adsorption-transformationdesorption process were investigated over the Ag-impregnated catalysts for lowtemperature selective catalytic oxidation of ammonia(NH_(3)-SCO).The optimal 5 wt.%Ag/Ce_(0.6)Zr_(0.4)O_(2) catalyst presented good NH_(3)-SCO performancewith>90% NH_(3) conversion at temperature(T)≥250°C and 89% N_(2) selectivity.Despite the irregular block shape and underdeveloped specific surface area(∼60m2/g),the naked and Ag-modified Ce_(0.6)Zr_(0.4)O_(2) solid solution still obtained highly dispersed distribution of surface elements analyzed by scanning electron microscope-energy dispersive spectrometer(SEM-EDS)(mapping),N_(2) adsorptiondesorption test and X-ray diffraction(XRD).H2 temperature programmed reduction(H2-TPR)and X-ray photoelectron spectroscopy(XPS)results indicated that Ag-modification enhanced the mobility and activation of oxygen-species leading to a promotion on CeO_(2) reducibility and synergistic Ag0/Ag+and Ce^(4+)/Ce^(3+)redox cycles.Besides,Ag+/Ag_(2)O clusters could facilitate the formation of surface oxygen vacancies that was beneficial to the adsorption and activation of ammonia.NH3-temperature programmed desorption(NH_(3)-TPD)showed more adsorption-desorption capacity to ammoniawere provided by physical,weakandmedium-strong acid sites.Diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)experiments revealed the activation of ammonia might be the control step of NH3-SCO procedure,during which NH3 dehydrogenation derived from NHx-species and also internal selective catalytic reduction(i-SCR)reactions were proposed.
基金financially supported by National Natural Science Foundation of China (Nos. 51808037 and 21876010)Fundamental Research Funds for the Central Universities, China (No. FRF-IDRY-20–018)+1 种基金China Postdoctoral Science Foundation (No. 2020M680903)Natural Science Foundation of Guangdong Province, China (No. 2020A1515011197)。
文摘Energy-saving and efficient monolithic catalysts are hotspots of catalytic purification of industrial gaseous pollutants.Here,we have developed an electrothermal catalytic mode,in which the ignition temperature required for the reaction is provided by Joule heat generated when the current flows through the catalyst.In this paper,Mn/NiAl/NF,Mn/NiFe/NF and Mn/NF metal-based monolithic catalysts were prepared using nickel foam (NF) as the carrier for thermal and electrothermal catalysis of n-heptane.The results indicated that Mn-based monolithic catalysts exhibit high activity in thermal and electrothermal catalysis.Mn/NiFe/NF achieve conversion of n-heptane more than 99%in electrothermal catalysis under a direct-current (DC) power of 6 W,and energy-saving is 54% compared with thermal catalysis.In addition,the results indicated that the introduction of NiAl (or NiFe) greatly enhanced the catalytic activity of Mn/NF,which attributed to the higher specific surface area,Mn3+/Mn4+,Ni3+/Ni^(2+),adsorbed oxygen species (Oads)/lattice oxygen species (Olatt),redox performance of the catalyst.Electrothermal catalytic activity was significantly higher than thermal catalytic activity before complete conversion,which may be related to electronic effects.Besides,Mn/NiFe/NF has good cyclic and long-term stability in electrothermal catalysis.This paper provided a theoretical basis for applying electrothermal catalysis in the field of VOCs elimination.