Owing to the distinctive structural characteristics,vanadium nitride(VN)is highly regarded as a catalyst for oxygen reduction reaction(ORR)in zinc-air batteries(ZABs).However,VN exhibits limited intrinsic ORR activity...Owing to the distinctive structural characteristics,vanadium nitride(VN)is highly regarded as a catalyst for oxygen reduction reaction(ORR)in zinc-air batteries(ZABs).However,VN exhibits limited intrinsic ORR activity due to the weak adsorption ability to O-containing species.Here,the S-doped VN anchored on N,S-doped multi-dimensional carbon(S-VN/Co/NS-MC)was constructed using the solvothermal and in-situ doping methods.Incorporating sulfur atoms into VN species alters the electron spin state of vanadium in the S-VN/Co/NS-MC for regulating the adsorption energy of vanadium sites to oxygen molecules.The introduced sulfur atoms polarize the V 3d_(z)^(2) electrons,shifting spin-down electrons closer to the Fermi level in the S-VN/Co/NS-MC.Consequently,the introduction of sulfur atoms into VN species enhances the adsorption energy of vanadium sites for oxygen molecules.The*OOH dissociation transitions from being unspontaneous on the VN surface to a spontaneous state on the S-doped VN surface.Then,the ORR barrier on the S-VN/Co/NS-MC surface is reduced.The S-VN/Co/NS-MC demonstrates a higher half-wave potential and limiting current density compared to the VN/Co/N-MC.The S-VN/Co/NS-MC-based liquid ZABs display a power density of 195.7 m W cm^(-2),a specific capacity of 815.7 m A h g^(-1),and a cycling stability exceeding 250 h.The S-VN/Co/NS-MC-based flexible ZABs are successfully employed to charge both a smart watch and a mobile phone.This approach holds promise for advancing the commercial utilization of VN-based catalysts in ZABs.展开更多
Network approaches have been widely accepted to guide surgical strategy and predict outcome for epilepsy treatment.This study starts with a single oscillator to explore brain activity,using a phenomenological model ca...Network approaches have been widely accepted to guide surgical strategy and predict outcome for epilepsy treatment.This study starts with a single oscillator to explore brain activity,using a phenomenological model capable of describing healthy and epileptic states.The ictal number of seizures decreases or remains unchanged with increasing the speed of oscillator excitability and in each seizure,there is an increasing tendency for ictal duration with respect to the speed.The underlying reason is that the strong excitability speed is conducive to reduce transition behaviors between two attractor basins.Moreover,the selection of the optimal removal node is estimated by an indicator proposed in this study.Results show that when the indicator is less than the threshold,removing the driving node is more possible to reduce seizures significantly,while the indicator exceeds the threshold,the epileptic node could be the removal one.Furthermore,the driving node is such a potential target that stimulating it is obviously effective in suppressing seizure-like activity compared to other nodes,and the propensity of seizures can be reduced 60%with the increased stimulus strength.Our results could provide new therapeutic ideas for epilepsy surgery and neuromodulation.展开更多
Although the significant roles of magnetic induction and electromagnetic radiation in the neural system have been widely studied,their influence on Parkinson’s disease(PD)has yet to be well explored.By virtue of the ...Although the significant roles of magnetic induction and electromagnetic radiation in the neural system have been widely studied,their influence on Parkinson’s disease(PD)has yet to be well explored.By virtue of the magnetic flux variable,this paper studies the transition of firing patterns induced by magnetic induction and the regulation effect of external magnetic radiation on the firing activities of the subthalamopallidal network in basal ganglia.We find:(i)The network reproduces five typical waveforms corresponding to the severity of symptoms:weak cluster,episodic,continuous cluster,episodic,and continuous wave.(ii)Magnetic induction is a double-edged sword for the treatment of PD.Although the increase of magnetic coefficient may lead the physiological firing activity to transfer to pathological firing activity,it also can regulate the pathological intensity firing activity with excessiveβ-band power transferring to the physiological firing pattern with weakβ-band power.(iii)External magnetic radiation could inhibit continuous tremulous firing andβ-band power of subthalamic nucleus(STN),which means the severity of symptoms weakened.Especially,the bi-parameter plane of the regulation region shows that a short pulse period of magnetic radiation and a medium level of pulse percentage can well regulate pathological oscillation.This work helps to understand the firing activity of the subthalamopallidal network under electromagnetic effect.It may also provide insights into the mechanisms behind the electromagnetic therapy of PD-related firing activity.展开更多
Clinical experiments have proven that the pedunculopontine nucleus(PPN)plays a crucial role in the modulation of beta oscillations in Parkinson’s disease(PD).Here,we propose a new computational framework by introduci...Clinical experiments have proven that the pedunculopontine nucleus(PPN)plays a crucial role in the modulation of beta oscillations in Parkinson’s disease(PD).Here,we propose a new computational framework by introducing the PPN and related synaptic connections to the classic basal ganglia-thalamo-cortical model.Fascinatingly,the improved model can not only simulate the basic saturated and beta activities mentioned in previous studies but also produce the normal alpha rhythm that is much closer to physiological phenomena.Specifically,the results show that Parkinsonian oscillation activities can be controlled and modulated by the connection strength between the PPN and the globus pallidus internal nucleus(GPi)and the subthalamic nucleus(STN),supporting the fact that PPN is overinhibited in PD.Meanwhile,the internal mechanism underlying these state transitions is further explained from the perspective of dynamics.Additionally,both deep brain stimulation(DBS)and optogenetic technology are considered effective in terms of abnormal oscillations.Especially when a low-frequency DBS is added to the PPN,beta oscillations can be suppressed,but it is excited again as the DBS’s frequency gradually increases to a larger value.These results coincide with the experimental results that low-frequency stimulation of the PPN is effective,and verify the rationality of the model.Furthermore,we show that optogenetic stimulation of the globus pallidus external(GPe)expressing excitatory channelrhodopsin(ChR2)can effectively inhibit beta oscillations,whereas exciting the STN and PPN has a limited effect.These results are consistent with experimental reports suggesting that the symptoms of PD’s movement disorder can be alleviated under the GPe-ChR2,but not STN-ChR2,situation.Although the functional role of the PPN and the feasibility of optogenetic stimulation remain to be clinically explored,the results obtained help us understand the mechanisms of beta oscillations in PD.展开更多
With the increasing integration of traditional elec-tric vehicles(EVs),the ensuing congestion and overloading issues have threatened the reliability of power grid operations.Hydrogen has been advocated as a promising ...With the increasing integration of traditional elec-tric vehicles(EVs),the ensuing congestion and overloading issues have threatened the reliability of power grid operations.Hydrogen has been advocated as a promising energy carrier to achieve low-carbon transportation and energy(trans-energy)systems,which can support the popularization of fuel-cell hybrid EVs(FCHEVs)while enhancing the flexibility of power grids.In this paper,we propose an optimal scheduling framework for trans-energy systems that evaluates the merits of the hydrogen supply chain from water electrolysis,compressed storage and transportation to FCHEV utilization.A detailed FCHEV model is established,and mileage is modeled as a function of the stored electricity and hydrogen mass.A stochastic programming-based scheduling model is formulated,which minimizes the total cost of unit commitment and the hydrogen supply chain.The Dijkstra algorithm is adopted to search the shortest path for hydrogen transportation.Case studies demonstrate that FCHEVs can reduce the operational costs of tran-energy systems and facilitate the accommodation of renewable energy when compared to traditional EVs.Index Terms-Fuel-cell hybrid electric vehicle,hydrogen,mileage model,shortest path search,trans-energy systems.展开更多
Land use projections are crucial for climate models to forecast the impacts of land use changes on the Earth’s system.However,the spatial resolution of existing global land use projections(e.g.,0.25°×0.25...Land use projections are crucial for climate models to forecast the impacts of land use changes on the Earth’s system.However,the spatial resolution of existing global land use projections(e.g.,0.25°×0.25°in the Land-Use Harmonization(LUH2)datasets)is still too coarse to drive regional climate models and assess mitigation effectiveness at regional and local scales.To generate a high-resolution land use product with the newest integrated scenarios of the shared socioeconomic pathways and the representative concentration pathways(SSPs-RCPs)for various regional climate studies in China,here we first conduct land use simulations with a newly developed Future Land Uses Simulation(FLUS)model based on the trajectories of land use demands extracted from the LUH2 datasets.On this basis,a new set of land use projections under the plant functional type(PFT)classification,with a temporal resolution of 5 years and a spatial resolution of 5 km,in eight SSP-RCP scenarios from 2015 to 2100 in China is produced.The results show that differences in land use dynamics under different SSP-RCP scenarios are jointly affected by global assumptions and national policies.Furthermore,with improved spatial resolution,the data produced in this study can sufficiently describe the details of land use distribution and better capture the spatial heterogeneity of different land use types at the regional scale.We highlight that these new land use projections at the PFT level have a strong potential for reducing uncertainty in the simulation of regional climate models with finer spatial resolutions.展开更多
Urban spatial structure is an important feature for assessing the effects of urban planning.Quantifying an urban spatial structure cannot only help in identifying the problems with current planning but also provide a ...Urban spatial structure is an important feature for assessing the effects of urban planning.Quantifying an urban spatial structure cannot only help in identifying the problems with current planning but also provide a basic reference for future adjustments.Evaluation of spatial structure is a difficult task for planners and researchers and this has been usually carried out by comparing different land use structures.However,these methods cannot efficiently reflect the influence of human activities.With the wide application of big data,analyzing data on human travel behavior has increasingly been carried out to reveal the relationship between urban spatial structure and urban planning.In this study,we constructed a human-activity space network using the taxi trip big data.Clustering at different scales revealed the hierarchy and redundancy of the spatial structure for assessing the appropriateness and shortcomings of urban planning.This method was applied to a case study based on one-month taxi trip data of Dongguan City.Existing urban spatial structures at different scales were retrieved and utilized to assess the effectiveness of the master plan designed for 2000 to 2015 and 2008 to 2020,which can help identify the limitations and improvements in the spatial structure designed in these two versions of the master plan.We also evaluated the potential effect of the master plan designed for 2016 to 2035 by providing a reference for reconstructing and optimizing future urban spatial structure.The analysis demonstrated that the taxi trip data are important big data on social spatial perception,and taxi data should be used for evaluating spatial structures in future urban planning.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.22178148,22278193,22075113)the Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment(Grant No.XTCX2029)+1 种基金a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_3691)。
文摘Owing to the distinctive structural characteristics,vanadium nitride(VN)is highly regarded as a catalyst for oxygen reduction reaction(ORR)in zinc-air batteries(ZABs).However,VN exhibits limited intrinsic ORR activity due to the weak adsorption ability to O-containing species.Here,the S-doped VN anchored on N,S-doped multi-dimensional carbon(S-VN/Co/NS-MC)was constructed using the solvothermal and in-situ doping methods.Incorporating sulfur atoms into VN species alters the electron spin state of vanadium in the S-VN/Co/NS-MC for regulating the adsorption energy of vanadium sites to oxygen molecules.The introduced sulfur atoms polarize the V 3d_(z)^(2) electrons,shifting spin-down electrons closer to the Fermi level in the S-VN/Co/NS-MC.Consequently,the introduction of sulfur atoms into VN species enhances the adsorption energy of vanadium sites for oxygen molecules.The*OOH dissociation transitions from being unspontaneous on the VN surface to a spontaneous state on the S-doped VN surface.Then,the ORR barrier on the S-VN/Co/NS-MC surface is reduced.The S-VN/Co/NS-MC demonstrates a higher half-wave potential and limiting current density compared to the VN/Co/N-MC.The S-VN/Co/NS-MC-based liquid ZABs display a power density of 195.7 m W cm^(-2),a specific capacity of 815.7 m A h g^(-1),and a cycling stability exceeding 250 h.The S-VN/Co/NS-MC-based flexible ZABs are successfully employed to charge both a smart watch and a mobile phone.This approach holds promise for advancing the commercial utilization of VN-based catalysts in ZABs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12072265,12272295,and 11972288)。
文摘Network approaches have been widely accepted to guide surgical strategy and predict outcome for epilepsy treatment.This study starts with a single oscillator to explore brain activity,using a phenomenological model capable of describing healthy and epileptic states.The ictal number of seizures decreases or remains unchanged with increasing the speed of oscillator excitability and in each seizure,there is an increasing tendency for ictal duration with respect to the speed.The underlying reason is that the strong excitability speed is conducive to reduce transition behaviors between two attractor basins.Moreover,the selection of the optimal removal node is estimated by an indicator proposed in this study.Results show that when the indicator is less than the threshold,removing the driving node is more possible to reduce seizures significantly,while the indicator exceeds the threshold,the epileptic node could be the removal one.Furthermore,the driving node is such a potential target that stimulating it is obviously effective in suppressing seizure-like activity compared to other nodes,and the propensity of seizures can be reduced 60%with the increased stimulus strength.Our results could provide new therapeutic ideas for epilepsy surgery and neuromodulation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11972292,12172291,and 12072265)the 111 Project(Grant No.BP0719007)。
文摘Although the significant roles of magnetic induction and electromagnetic radiation in the neural system have been widely studied,their influence on Parkinson’s disease(PD)has yet to be well explored.By virtue of the magnetic flux variable,this paper studies the transition of firing patterns induced by magnetic induction and the regulation effect of external magnetic radiation on the firing activities of the subthalamopallidal network in basal ganglia.We find:(i)The network reproduces five typical waveforms corresponding to the severity of symptoms:weak cluster,episodic,continuous cluster,episodic,and continuous wave.(ii)Magnetic induction is a double-edged sword for the treatment of PD.Although the increase of magnetic coefficient may lead the physiological firing activity to transfer to pathological firing activity,it also can regulate the pathological intensity firing activity with excessiveβ-band power transferring to the physiological firing pattern with weakβ-band power.(iii)External magnetic radiation could inhibit continuous tremulous firing andβ-band power of subthalamic nucleus(STN),which means the severity of symptoms weakened.Especially,the bi-parameter plane of the regulation region shows that a short pulse period of magnetic radiation and a medium level of pulse percentage can well regulate pathological oscillation.This work helps to understand the firing activity of the subthalamopallidal network under electromagnetic effect.It may also provide insights into the mechanisms behind the electromagnetic therapy of PD-related firing activity.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072265 and 12372064).
文摘Clinical experiments have proven that the pedunculopontine nucleus(PPN)plays a crucial role in the modulation of beta oscillations in Parkinson’s disease(PD).Here,we propose a new computational framework by introducing the PPN and related synaptic connections to the classic basal ganglia-thalamo-cortical model.Fascinatingly,the improved model can not only simulate the basic saturated and beta activities mentioned in previous studies but also produce the normal alpha rhythm that is much closer to physiological phenomena.Specifically,the results show that Parkinsonian oscillation activities can be controlled and modulated by the connection strength between the PPN and the globus pallidus internal nucleus(GPi)and the subthalamic nucleus(STN),supporting the fact that PPN is overinhibited in PD.Meanwhile,the internal mechanism underlying these state transitions is further explained from the perspective of dynamics.Additionally,both deep brain stimulation(DBS)and optogenetic technology are considered effective in terms of abnormal oscillations.Especially when a low-frequency DBS is added to the PPN,beta oscillations can be suppressed,but it is excited again as the DBS’s frequency gradually increases to a larger value.These results coincide with the experimental results that low-frequency stimulation of the PPN is effective,and verify the rationality of the model.Furthermore,we show that optogenetic stimulation of the globus pallidus external(GPe)expressing excitatory channelrhodopsin(ChR2)can effectively inhibit beta oscillations,whereas exciting the STN and PPN has a limited effect.These results are consistent with experimental reports suggesting that the symptoms of PD’s movement disorder can be alleviated under the GPe-ChR2,but not STN-ChR2,situation.Although the functional role of the PPN and the feasibility of optogenetic stimulation remain to be clinically explored,the results obtained help us understand the mechanisms of beta oscillations in PD.
基金supported by the Smart Grid Joint Foundation Program of National Natural Science Foundation of China and State Grid Corporation of China(U1866204)and the National Key Research and Development Program of China(2020YFF0305800)。
文摘With the increasing integration of traditional elec-tric vehicles(EVs),the ensuing congestion and overloading issues have threatened the reliability of power grid operations.Hydrogen has been advocated as a promising energy carrier to achieve low-carbon transportation and energy(trans-energy)systems,which can support the popularization of fuel-cell hybrid EVs(FCHEVs)while enhancing the flexibility of power grids.In this paper,we propose an optimal scheduling framework for trans-energy systems that evaluates the merits of the hydrogen supply chain from water electrolysis,compressed storage and transportation to FCHEV utilization.A detailed FCHEV model is established,and mileage is modeled as a function of the stored electricity and hydrogen mass.A stochastic programming-based scheduling model is formulated,which minimizes the total cost of unit commitment and the hydrogen supply chain.The Dijkstra algorithm is adopted to search the shortest path for hydrogen transportation.Case studies demonstrate that FCHEVs can reduce the operational costs of tran-energy systems and facilitate the accommodation of renewable energy when compared to traditional EVs.Index Terms-Fuel-cell hybrid electric vehicle,hydrogen,mileage model,shortest path search,trans-energy systems.
基金the National Key Research&Development Program of China(2019YFA0607203,2017YFA0604404)the National Natural Science Foundation of China(41901327,41671398,41871318)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(2019A1515010823)the Fundamental Research Funds for the Central Universities(19lgpy41)Natural Resources of the People’s Republic of China(GS(2020)2879)。
文摘Land use projections are crucial for climate models to forecast the impacts of land use changes on the Earth’s system.However,the spatial resolution of existing global land use projections(e.g.,0.25°×0.25°in the Land-Use Harmonization(LUH2)datasets)is still too coarse to drive regional climate models and assess mitigation effectiveness at regional and local scales.To generate a high-resolution land use product with the newest integrated scenarios of the shared socioeconomic pathways and the representative concentration pathways(SSPs-RCPs)for various regional climate studies in China,here we first conduct land use simulations with a newly developed Future Land Uses Simulation(FLUS)model based on the trajectories of land use demands extracted from the LUH2 datasets.On this basis,a new set of land use projections under the plant functional type(PFT)classification,with a temporal resolution of 5 years and a spatial resolution of 5 km,in eight SSP-RCP scenarios from 2015 to 2100 in China is produced.The results show that differences in land use dynamics under different SSP-RCP scenarios are jointly affected by global assumptions and national policies.Furthermore,with improved spatial resolution,the data produced in this study can sufficiently describe the details of land use distribution and better capture the spatial heterogeneity of different land use types at the regional scale.We highlight that these new land use projections at the PFT level have a strong potential for reducing uncertainty in the simulation of regional climate models with finer spatial resolutions.
基金supported by the National Natural Science Foundation of China(Grant Nos.42001326 and 41871318)the Fundamental Research Funds for the Central Universities(Grant No.191gpy53)the China National Postdoctoral Program for Innovative Talents(Grant No.BX20180389).
文摘Urban spatial structure is an important feature for assessing the effects of urban planning.Quantifying an urban spatial structure cannot only help in identifying the problems with current planning but also provide a basic reference for future adjustments.Evaluation of spatial structure is a difficult task for planners and researchers and this has been usually carried out by comparing different land use structures.However,these methods cannot efficiently reflect the influence of human activities.With the wide application of big data,analyzing data on human travel behavior has increasingly been carried out to reveal the relationship between urban spatial structure and urban planning.In this study,we constructed a human-activity space network using the taxi trip big data.Clustering at different scales revealed the hierarchy and redundancy of the spatial structure for assessing the appropriateness and shortcomings of urban planning.This method was applied to a case study based on one-month taxi trip data of Dongguan City.Existing urban spatial structures at different scales were retrieved and utilized to assess the effectiveness of the master plan designed for 2000 to 2015 and 2008 to 2020,which can help identify the limitations and improvements in the spatial structure designed in these two versions of the master plan.We also evaluated the potential effect of the master plan designed for 2016 to 2035 by providing a reference for reconstructing and optimizing future urban spatial structure.The analysis demonstrated that the taxi trip data are important big data on social spatial perception,and taxi data should be used for evaluating spatial structures in future urban planning.