It is important to inhibit the precipitation of η phases in precipitation strengthened Fe-Ni based alloys,as they will deteriorate not only the mechanical property but also the hydrogen resistance.The present investi...It is important to inhibit the precipitation of η phases in precipitation strengthened Fe-Ni based alloys,as they will deteriorate not only the mechanical property but also the hydrogen resistance.The present investigation shows that grain boundary engineering(GBE) can retard the formation and growth of ηphase in J75 alloy.After GBE treatment with 5% cold rolling followed by annealing at 1000℃ for 1 h,the fraction of special boundaries(SBs) increases from 38.4% in conventional alloy to 77.2% and the fraction of special triple junctions increases from 10% to 74%.During 800℃ aging treatment,quite amount of cellular η phases adjacent to random grain boundary(RGB) will be found in conventional alloy,and only a few small η phases have been observed in GBE treatment alloy subjected to the same aging treatment for long time.The reason for GBE in inhibiting precipitation of η phase can be attributed to not only introducing high fraction of SBs but also breaking the connectivity of RGB networks.As nucleation and growth of η phases on SBs are difficult due to their lower Ti concentration and diffusion rate,and the disruption of RGB networks reduces supply of Ti atoms to the η phases significantly,which impedes their growth at RGB.展开更多
Radiotherapy(RT)mediated tumor immunogenicity offers an opportunity for simultaneous RT and immunotherapy via immunogenic cell death(ICD),which releases damaged-associated molecular patterns and generates“eat me”sig...Radiotherapy(RT)mediated tumor immunogenicity offers an opportunity for simultaneous RT and immunotherapy via immunogenic cell death(ICD),which releases damaged-associated molecular patterns and generates“eat me”signals for the innate immune system to modulate the immunogenicity.However,tumor hypoxia significantly reduces the therapeutic efficacy of RT and hampers its mediation of ICD induction.Herein,Au@Bi_(2)Te_(3)-polyethylene glycol(PEG)was rationally constructed as theranostic nanozymes for mild photothermal therapy,tumor hypoxia modulation,and RT adjuvant cancer immunotherapy.The tumor-specific production of oxygen could not only augment the effects of RT by enhanced reactive oxygen species(ROS)generation,but also reduce hypoxia-related cytokines and downregulate programmed cell death-ligand 1(PD-L1)to unleash immune-enhancing T cells.Moreover,Au@Bi_(2)Te_(3)-PEG could act as an immune-blocking inhibitor by efficient ICD induction with the combination of mild-photothermal therapy+RT to inhibit the tumor immune escape and improve antitumor immune response.Increased amounts of CD^(4+) and CD^(8+) Tcells and elevated levels of cytokines could be observed that eventually led to effective post-medication inhibition of primary and abscopal tumors.Spectral computed tomography/photoacoustic imaging allowed noninvasive and real-time tracking of nanoparticle(NP)accumulation and oxygenation status at tumor sites.Collectively,Au@Bi_(2)Te_(3)-PEG NPs could serve as effective theranostic nanoregulators with remarkable synergistic mildphotothermal/RT/immunotherapy effects that helped reshape the immune microenvironment and had remarkable molecular imaging properties.展开更多
基金supported by the National Natural Science Foundation of China and China Academy of Engineering Physics[No.U1730140]National Key Research and Development Program of China[Grant No.2019YFB1505201]。
文摘It is important to inhibit the precipitation of η phases in precipitation strengthened Fe-Ni based alloys,as they will deteriorate not only the mechanical property but also the hydrogen resistance.The present investigation shows that grain boundary engineering(GBE) can retard the formation and growth of ηphase in J75 alloy.After GBE treatment with 5% cold rolling followed by annealing at 1000℃ for 1 h,the fraction of special boundaries(SBs) increases from 38.4% in conventional alloy to 77.2% and the fraction of special triple junctions increases from 10% to 74%.During 800℃ aging treatment,quite amount of cellular η phases adjacent to random grain boundary(RGB) will be found in conventional alloy,and only a few small η phases have been observed in GBE treatment alloy subjected to the same aging treatment for long time.The reason for GBE in inhibiting precipitation of η phase can be attributed to not only introducing high fraction of SBs but also breaking the connectivity of RGB networks.As nucleation and growth of η phases on SBs are difficult due to their lower Ti concentration and diffusion rate,and the disruption of RGB networks reduces supply of Ti atoms to the η phases significantly,which impedes their growth at RGB.
基金This work was supported by the National Natural Science Foundation of China(Nos.81871334,81801764,82072056,and 51937010)the Guangdong Basic and Applied Basic Research Foundation(Nos.2017A050506011,2018030310343,2020B1515020008,2021A1515012542,and 2021A1515011882)+1 种基金the Medical Scientific Research Foundation of Guangdong Province(No.A2018014)the Pearl River Talented Young Scholar Program(No.2017GC010282).
文摘Radiotherapy(RT)mediated tumor immunogenicity offers an opportunity for simultaneous RT and immunotherapy via immunogenic cell death(ICD),which releases damaged-associated molecular patterns and generates“eat me”signals for the innate immune system to modulate the immunogenicity.However,tumor hypoxia significantly reduces the therapeutic efficacy of RT and hampers its mediation of ICD induction.Herein,Au@Bi_(2)Te_(3)-polyethylene glycol(PEG)was rationally constructed as theranostic nanozymes for mild photothermal therapy,tumor hypoxia modulation,and RT adjuvant cancer immunotherapy.The tumor-specific production of oxygen could not only augment the effects of RT by enhanced reactive oxygen species(ROS)generation,but also reduce hypoxia-related cytokines and downregulate programmed cell death-ligand 1(PD-L1)to unleash immune-enhancing T cells.Moreover,Au@Bi_(2)Te_(3)-PEG could act as an immune-blocking inhibitor by efficient ICD induction with the combination of mild-photothermal therapy+RT to inhibit the tumor immune escape and improve antitumor immune response.Increased amounts of CD^(4+) and CD^(8+) Tcells and elevated levels of cytokines could be observed that eventually led to effective post-medication inhibition of primary and abscopal tumors.Spectral computed tomography/photoacoustic imaging allowed noninvasive and real-time tracking of nanoparticle(NP)accumulation and oxygenation status at tumor sites.Collectively,Au@Bi_(2)Te_(3)-PEG NPs could serve as effective theranostic nanoregulators with remarkable synergistic mildphotothermal/RT/immunotherapy effects that helped reshape the immune microenvironment and had remarkable molecular imaging properties.