Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu...Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines...This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines. Two classes of measurements(i.e., local measurements and edge measurements) are obtained, respectively, from the individual area and the transmission lines. A decentralized state estimator, whose performance is resistant against measurement with anomalies, is designed based on the minimum error entropy with fiducial points(MEEF) criterion. Specifically, 1) An augmented model, which incorporates the local prediction and local measurement, is developed by resorting to the unscented transformation approach and the statistical linearization approach;2) Using the augmented model, an MEEF-based cost function is designed that reflects the local prediction errors of the state and the measurement;and 3) The local estimate is first obtained by minimizing the MEEF-based cost function through a fixed-point iteration and then updated by using the edge measuring information. Finally, simulation experiments with three scenarios are carried out on the IEEE 14-bus system to illustrate the validity of the proposed anomaly-resistant decentralized SE scheme.展开更多
Dear Editor, This letter focuses on the protocol-based non-fragile state estimation problem for a class of recurrent neural networks(RNNs). With the development of communication technology, the networked systems have ...Dear Editor, This letter focuses on the protocol-based non-fragile state estimation problem for a class of recurrent neural networks(RNNs). With the development of communication technology, the networked systems have received particular attentions. The networked system brings advantages such as easy to implement.展开更多
This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises,multiple missing measurements as well as the dynamic event-triggered transmission scheme.The...This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises,multiple missing measurements as well as the dynamic event-triggered transmission scheme.The multiple missing measurements are characterized through random variables that obey some given probability distributions,and thresholds of the dynamic event-triggered scheme can be adjusted dynamically via an auxiliary variable.Our attention is concentrated on designing a dynamic event-triggered quadratic nonfragile filter in the well-known minimum-variance sense.To this end,the original system is first augmented by stacking its state/measurement vectors together with second-order Kronecker powers,thus the original design issue is reformulated as that of the augmented system.Subsequently,we analyze statistical properties of augmented noises as well as high-order moments of certain random parameters.With the aid of two well-defined matrix difference equations,we not only obtain upper bounds on filtering error covariances,but also minimize those bounds via carefully designing gain parameters.Finally,an example is presented to explain the effectiveness of this newly established quadratic filtering algorithm.展开更多
This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measu...This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measurement signals transmitted over a communication network might be intercepted by potential eavesdroppers.To avoid information leakage,by resorting to an artificial-noise-assisted method,we develop a novel encryption-decryption scheme to ensure that the transmitted signal is composed of the raw measurement and an artificial-noise term.A special evaluation index named secrecy capacity is employed to assess the information security of signal transmissions under the developed encryption-decryption scheme.The purpose of the addressed problem is to design an encryptiondecryption scheme and a state estimator such that:1)the desired secrecy capacity is ensured;and 2)the required finite-horizon–l_(2)-l_(∞)performance is achieved.Sufficient conditions are established on the existence of the encryption-decryption mechanism and the finite-horizon state estimator.Finally,simulation results are proposed to show the effectiveness of our proposed encryption-decryption-based state estimation scheme.展开更多
Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing...Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing DL methods have difficulty in achieving good performance in identifying leakage types due to the complex time dynamics of pipeline data.On the other hand,the initial parameter selection in the detection model is generally random,which may lead to unstable recognition performance.For this reason,a hybrid DL framework referred to as parameter-optimized recurrent attention network(PRAN)is presented in this paper to improve the accuracy of PLD.First,a parameter-optimized long short-term memory(LSTM)network is introduced to extract effective and robust features,which exploits a particle swarm optimization(PSO)algorithm with cross-entropy fitness function to search for globally optimal parameters.With this framework,the learning representation capability of the model is improved and the convergence rate is accelerated.Moreover,an anomaly-attention mechanism(AM)is proposed to discover class discriminative information by weighting the hidden states,which contributes to amplifying the normalabnormal distinguishable discrepancy,further improving the accuracy of PLD.After that,the proposed PRAN not only implements the adaptive optimization of network parameters,but also enlarges the contribution of normal-abnormal discrepancy,thereby overcoming the drawbacks of instability and poor generalization.Finally,the experimental results demonstrate the effectiveness and superiority of the proposed PRAN for PLD.展开更多
High-dimensional and incomplete(HDI)data subject to the nonnegativity constraints are commonly encountered in a big data-related application concerning the interactions among numerous nodes.A nonnegative latent factor...High-dimensional and incomplete(HDI)data subject to the nonnegativity constraints are commonly encountered in a big data-related application concerning the interactions among numerous nodes.A nonnegative latent factor analysis(NLFA)model can perform representation learning to HDI data efficiently.However,existing NLFA models suffer from either slow convergence rate or representation accuracy loss.To address this issue,this paper proposes a proximal alternating-directionmethod-of-multipliers-based nonnegative latent factor analysis(PAN)model with two-fold ideas:(1)adopting the principle of alternating-direction-method-of-multipliers to implement an efficient learning scheme for fast convergence and high computational efficiency;and(2)incorporating the proximal regularization into the learning scheme to suppress the optimization fluctuation for high representation learning accuracy to HDI data.Theoretical studies verify that PAN converges to a Karush-KuhnTucker(KKT)stationary point of its nonnegativity-constrained learning objective with its learning scheme.Experimental results on eight HDI matrices from real applications demonstrate that the proposed PAN model outperforms several state-of-the-art models in both estimation accuracy for missing data of an HDI matrix and computational efficiency.展开更多
Seed weight is a component of seed yield in rapeseed(Brassica napus L.).Although quantitative trait loci(QTL)for seed weight have been reported in rapeseed,only a few causal quantitative trait genes(QTGs)have been ide...Seed weight is a component of seed yield in rapeseed(Brassica napus L.).Although quantitative trait loci(QTL)for seed weight have been reported in rapeseed,only a few causal quantitative trait genes(QTGs)have been identified,resulting in a limitation in understanding of seed weight regulation.We constructed a gene coexpression network at the early seed developmental stage using transcripts of 20,408 genes in QTL intervals and 1017 rapeseed homologs of known genes from other species.Among the 10 modules in this gene coexpression network,modules 1 and 2 were core modules and contained genes involved in source–flow–sink processes such as synthesis and transportation of fatty acid and protein,and photosynthesis.A hub gene SERINE CARBOXYPEPTIDASE-LIKE 19(SCPL19)was identified by candidate gene association analysis in rapeseed and functionally investigated using Arabidopsis T-DNA mutant and overexpression lines.Our study demonstrates the power of gene coexpression analysis to prioritize candidate genes from large candidate QTG sets and enhances the understanding of molecular mechanism for seed weight at the early developmental stage in rapeseed.展开更多
Seed number per silique(SNPS)is one of seed yield components in rapeseed,but its genetic mechanism remains elusive.Here a double haploid(DH)population derived from a hybrid between female 6Q006with 35–40 SNPS and mal...Seed number per silique(SNPS)is one of seed yield components in rapeseed,but its genetic mechanism remains elusive.Here a double haploid(DH)population derived from a hybrid between female 6Q006with 35–40 SNPS and male 6W26 with 10–15 SNPS was investigated for SNPS in the year 2017,2018,2019 and 2021,and genotyped with Brassica 60K Illumina Infinium SNP array.An overlapping major QTL(qSNPS.C09)explaining 51.50%of phenotypic variance on average was narrowed to a 0.90 Mb region from 44.87 Mb to 45.77 Mb on chromosome C09 by BSA-seq.Subsequently,two DEGs in this interval were detected between extreme individuals in DH and F_2populations by transcriptome sequencing at7 and 14 days after pollination siliques.Of which,BnaC09g45400D encoded an adenine phosphoribosyltransferase 5(APT5)has a 48-bp InDel variation in the promoter of two parents.Candidate gene association analysis showed that this InDel variation was associated with SNPS in a nature population of rapeseed,where 54 accessions carrying the same haplotype as parent 6Q006 had higher SNPS than103 accessions carrying the same haplotype as parent 6W26.Collectively,the findings are helpful for rapeseed molecular breeding of SNPS,and provide new insight into the genetic and molecular mechanism of SNPS in rapeseed.展开更多
In this paper,an adaptive dynamic programming(ADP)strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to input saturation.To save the communication resources between th...In this paper,an adaptive dynamic programming(ADP)strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to input saturation.To save the communication resources between the controller and the actuators,stochastic communication protocols(SCPs)are adopted to schedule the control signal,and therefore the closed-loop system is essentially a protocol-induced switching system.A neural network(NN)-based identifier with a robust term is exploited for approximating the unknown nonlinear system,and a set of switch-based updating rules with an additional tunable parameter of NN weights are developed with the help of the gradient descent.By virtue of a novel Lyapunov function,a sufficient condition is proposed to achieve the stability of both system identification errors and the update dynamics of NN weights.Then,a value iterative ADP algorithm in an offline way is proposed to solve the optimal control of protocol-induced switching systems with saturation constraints,and the convergence is profoundly discussed in light of mathematical induction.Furthermore,an actor-critic NN scheme is developed to approximate the control law and the proposed performance index function in the framework of ADP,and the stability of the closed-loop system is analyzed in view of the Lyapunov theory.Finally,the numerical simulation results are presented to demonstrate the effectiveness of the proposed control scheme.展开更多
Dear editor,This letter focuses on the encoding-decoding-based recursive filtering problem for a class of fractional-order systems.For the purpose of protecting security of the wireless communication network,a dynamic...Dear editor,This letter focuses on the encoding-decoding-based recursive filtering problem for a class of fractional-order systems.For the purpose of protecting security of the wireless communication network,a dynamic-quantization-based encoding-decoding mechanism is introduced to encrypt the transmitted measurement.Specifically,the measurement outputs are first encoded by the encoder into codewords which are then transmitted over the wireless communication network.After received by the decoder,the codewords are decoded and then sent to the filter.In light of the mathematical properties of truncated Gaussian distribution,the variance of the encoding-decoding-induced error between the decoded measurement and the real measurement is derived.An upper bound on the filtering error covariance is first obtained based on the variance of the encoding-decoding-induced error.Then,the minimal upper bound is derived by choosing proper filter gain.Finally,the efficiency and superiority of the proposed algorithm are verified through a simulation example.展开更多
This paper deals with distributed state estimation problem for discrete time-varying systems over binary sensor networks,where every binary sensor is equipped with an energy harvester.The input of every binary sensor ...This paper deals with distributed state estimation problem for discrete time-varying systems over binary sensor networks,where every binary sensor is equipped with an energy harvester.The input of every binary sensor considers the randomly occurring missing measurements.The differences between the real and estimated inputs of binary sensor are employed to derive useful information in order to address the insufficient information for estimation purpose.The information from neighboring nodes is transmitted only if its energy level is positive,where a random variable is introduced to formulate the energy level.By means of the available information,distributed estimator is constructed for each binary sensor and the desirable performance constraints is given for the dynamic characteristics of estimation errors within anite time horizon.Sucient conditions are established for the existence of desired distribution estimation quantities through local performance analysis methods.Also,the desired distributed estimator gains are calculated recursively,which means the desirable scalability.Ultimately,the viability and efficiency of the distributed scheme are exhibited through a practical illustration.展开更多
基金supported in part by the National Natural Science Foundation of China (61973219,U21A2019,61873058)the Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ105)。
文摘Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.
基金supported in part by the National Natural Science Foundation of China(61933007, U21A2019, 62273005, 62273088, 62303301)the Program of Shanghai Academic/Technology Research Leader of China (20XD1420100)+2 种基金the Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the Natural Science Foundation of Anhui Province of China (2108085MA07)the Alexander von Humboldt Foundation of Germany。
文摘This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines. Two classes of measurements(i.e., local measurements and edge measurements) are obtained, respectively, from the individual area and the transmission lines. A decentralized state estimator, whose performance is resistant against measurement with anomalies, is designed based on the minimum error entropy with fiducial points(MEEF) criterion. Specifically, 1) An augmented model, which incorporates the local prediction and local measurement, is developed by resorting to the unscented transformation approach and the statistical linearization approach;2) Using the augmented model, an MEEF-based cost function is designed that reflects the local prediction errors of the state and the measurement;and 3) The local estimate is first obtained by minimizing the MEEF-based cost function through a fixed-point iteration and then updated by using the edge measuring information. Finally, simulation experiments with three scenarios are carried out on the IEEE 14-bus system to illustrate the validity of the proposed anomaly-resistant decentralized SE scheme.
基金supported in part by the National Natural Science Foundation of China (U21A2019, 61933007)the Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ105)。
文摘Dear Editor, This letter focuses on the protocol-based non-fragile state estimation problem for a class of recurrent neural networks(RNNs). With the development of communication technology, the networked systems have received particular attentions. The networked system brings advantages such as easy to implement.
基金supported in part by the National Natural Science Foundation of China(61933007,U21A2019,U22A2044,61973102,62073180)the Natural Science Foundation of Shandong Province of China(ZR2021MF088)+1 种基金the Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the Royal Society of the UK,and the Alexander vonHumboldt Foundation of Germany。
文摘This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises,multiple missing measurements as well as the dynamic event-triggered transmission scheme.The multiple missing measurements are characterized through random variables that obey some given probability distributions,and thresholds of the dynamic event-triggered scheme can be adjusted dynamically via an auxiliary variable.Our attention is concentrated on designing a dynamic event-triggered quadratic nonfragile filter in the well-known minimum-variance sense.To this end,the original system is first augmented by stacking its state/measurement vectors together with second-order Kronecker powers,thus the original design issue is reformulated as that of the augmented system.Subsequently,we analyze statistical properties of augmented noises as well as high-order moments of certain random parameters.With the aid of two well-defined matrix difference equations,we not only obtain upper bounds on filtering error covariances,but also minimize those bounds via carefully designing gain parameters.Finally,an example is presented to explain the effectiveness of this newly established quadratic filtering algorithm.
基金This work was supported in part by the National Natural Science Foundation of China(62273087,61933007,62273088,U21A2019,62073180)the Shanghai Pujiang Program of China(22PJ1400400)+3 种基金the Program of Shanghai Academic/Technology Research Leader of China(20XD1420100)the European Union’s Horizon 2020 Research and Innovation Programme(820776)(INTEGRADDE)the Royal Society of UKthe Alexander von Humboldt Foundation of Germany.
文摘This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measurement signals transmitted over a communication network might be intercepted by potential eavesdroppers.To avoid information leakage,by resorting to an artificial-noise-assisted method,we develop a novel encryption-decryption scheme to ensure that the transmitted signal is composed of the raw measurement and an artificial-noise term.A special evaluation index named secrecy capacity is employed to assess the information security of signal transmissions under the developed encryption-decryption scheme.The purpose of the addressed problem is to design an encryptiondecryption scheme and a state estimator such that:1)the desired secrecy capacity is ensured;and 2)the required finite-horizon–l_(2)-l_(∞)performance is achieved.Sufficient conditions are established on the existence of the encryption-decryption mechanism and the finite-horizon state estimator.Finally,simulation results are proposed to show the effectiveness of our proposed encryption-decryption-based state estimation scheme.
基金This work was supported in part by the National Natural Science Foundation of China(U21A2019,61873058),Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the Alexander von Humboldt Foundation of Germany.
文摘Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing DL methods have difficulty in achieving good performance in identifying leakage types due to the complex time dynamics of pipeline data.On the other hand,the initial parameter selection in the detection model is generally random,which may lead to unstable recognition performance.For this reason,a hybrid DL framework referred to as parameter-optimized recurrent attention network(PRAN)is presented in this paper to improve the accuracy of PLD.First,a parameter-optimized long short-term memory(LSTM)network is introduced to extract effective and robust features,which exploits a particle swarm optimization(PSO)algorithm with cross-entropy fitness function to search for globally optimal parameters.With this framework,the learning representation capability of the model is improved and the convergence rate is accelerated.Moreover,an anomaly-attention mechanism(AM)is proposed to discover class discriminative information by weighting the hidden states,which contributes to amplifying the normalabnormal distinguishable discrepancy,further improving the accuracy of PLD.After that,the proposed PRAN not only implements the adaptive optimization of network parameters,but also enlarges the contribution of normal-abnormal discrepancy,thereby overcoming the drawbacks of instability and poor generalization.Finally,the experimental results demonstrate the effectiveness and superiority of the proposed PRAN for PLD.
基金supported by the National Natural Science Foundation of China(62272078,U21A2019)the Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the CAAI-Huawei MindSpore Open Fund(CAAIXSJLJJ-2021-035A)。
文摘High-dimensional and incomplete(HDI)data subject to the nonnegativity constraints are commonly encountered in a big data-related application concerning the interactions among numerous nodes.A nonnegative latent factor analysis(NLFA)model can perform representation learning to HDI data efficiently.However,existing NLFA models suffer from either slow convergence rate or representation accuracy loss.To address this issue,this paper proposes a proximal alternating-directionmethod-of-multipliers-based nonnegative latent factor analysis(PAN)model with two-fold ideas:(1)adopting the principle of alternating-direction-method-of-multipliers to implement an efficient learning scheme for fast convergence and high computational efficiency;and(2)incorporating the proximal regularization into the learning scheme to suppress the optimization fluctuation for high representation learning accuracy to HDI data.Theoretical studies verify that PAN converges to a Karush-KuhnTucker(KKT)stationary point of its nonnegativity-constrained learning objective with its learning scheme.Experimental results on eight HDI matrices from real applications demonstrate that the proposed PAN model outperforms several state-of-the-art models in both estimation accuracy for missing data of an HDI matrix and computational efficiency.
基金provided by the National Natural Science Foundation of China(32201776)the Natural Science Foundation of Chongqing(cstc2019jcyj-bsh X0055,cstc2019jcyj-zdxm X0012)。
文摘Seed weight is a component of seed yield in rapeseed(Brassica napus L.).Although quantitative trait loci(QTL)for seed weight have been reported in rapeseed,only a few causal quantitative trait genes(QTGs)have been identified,resulting in a limitation in understanding of seed weight regulation.We constructed a gene coexpression network at the early seed developmental stage using transcripts of 20,408 genes in QTL intervals and 1017 rapeseed homologs of known genes from other species.Among the 10 modules in this gene coexpression network,modules 1 and 2 were core modules and contained genes involved in source–flow–sink processes such as synthesis and transportation of fatty acid and protein,and photosynthesis.A hub gene SERINE CARBOXYPEPTIDASE-LIKE 19(SCPL19)was identified by candidate gene association analysis in rapeseed and functionally investigated using Arabidopsis T-DNA mutant and overexpression lines.Our study demonstrates the power of gene coexpression analysis to prioritize candidate genes from large candidate QTG sets and enhances the understanding of molecular mechanism for seed weight at the early developmental stage in rapeseed.
基金supported by the National Basic Research Program of China(2015CB150201)the Natural Science Foundation of Chongqing(cstc2019jcyj-bshX0055,cstc2019jcyj-zdxmX0012cstc2020jcyj-msxmX0461)。
文摘Seed number per silique(SNPS)is one of seed yield components in rapeseed,but its genetic mechanism remains elusive.Here a double haploid(DH)population derived from a hybrid between female 6Q006with 35–40 SNPS and male 6W26 with 10–15 SNPS was investigated for SNPS in the year 2017,2018,2019 and 2021,and genotyped with Brassica 60K Illumina Infinium SNP array.An overlapping major QTL(qSNPS.C09)explaining 51.50%of phenotypic variance on average was narrowed to a 0.90 Mb region from 44.87 Mb to 45.77 Mb on chromosome C09 by BSA-seq.Subsequently,two DEGs in this interval were detected between extreme individuals in DH and F_2populations by transcriptome sequencing at7 and 14 days after pollination siliques.Of which,BnaC09g45400D encoded an adenine phosphoribosyltransferase 5(APT5)has a 48-bp InDel variation in the promoter of two parents.Candidate gene association analysis showed that this InDel variation was associated with SNPS in a nature population of rapeseed,where 54 accessions carrying the same haplotype as parent 6Q006 had higher SNPS than103 accessions carrying the same haplotype as parent 6W26.Collectively,the findings are helpful for rapeseed molecular breeding of SNPS,and provide new insight into the genetic and molecular mechanism of SNPS in rapeseed.
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)Australian Research Council(DP190101557)。
文摘In this paper,an adaptive dynamic programming(ADP)strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to input saturation.To save the communication resources between the controller and the actuators,stochastic communication protocols(SCPs)are adopted to schedule the control signal,and therefore the closed-loop system is essentially a protocol-induced switching system.A neural network(NN)-based identifier with a robust term is exploited for approximating the unknown nonlinear system,and a set of switch-based updating rules with an additional tunable parameter of NN weights are developed with the help of the gradient descent.By virtue of a novel Lyapunov function,a sufficient condition is proposed to achieve the stability of both system identification errors and the update dynamics of NN weights.Then,a value iterative ADP algorithm in an offline way is proposed to solve the optimal control of protocol-induced switching systems with saturation constraints,and the convergence is profoundly discussed in light of mathematical induction.Furthermore,an actor-critic NN scheme is developed to approximate the control law and the proposed performance index function in the framework of ADP,and the stability of the closed-loop system is analyzed in view of the Lyapunov theory.Finally,the numerical simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
基金supported in part by the National Natural Science Foundation of China(U21A2019,61873058,61933007,62103095)the Hainan Province Science and Technology Special Fund(ZDYF2022SHFZ105)+1 种基金the Natural Science Foundation of Heilongjiang Province of China(LH2021F005)the Alexander von Humboldt Foundation of Germany。
文摘Dear editor,This letter focuses on the encoding-decoding-based recursive filtering problem for a class of fractional-order systems.For the purpose of protecting security of the wireless communication network,a dynamic-quantization-based encoding-decoding mechanism is introduced to encrypt the transmitted measurement.Specifically,the measurement outputs are first encoded by the encoder into codewords which are then transmitted over the wireless communication network.After received by the decoder,the codewords are decoded and then sent to the filter.In light of the mathematical properties of truncated Gaussian distribution,the variance of the encoding-decoding-induced error between the decoded measurement and the real measurement is derived.An upper bound on the filtering error covariance is first obtained based on the variance of the encoding-decoding-induced error.Then,the minimal upper bound is derived by choosing proper filter gain.Finally,the efficiency and superiority of the proposed algorithm are verified through a simulation example.
基金supported in part by the National Natural Science Foundation of China under Grants 62073070 and U21A2019,and in part by the Alexander von Humboldt Foundation of Germany.
文摘This paper deals with distributed state estimation problem for discrete time-varying systems over binary sensor networks,where every binary sensor is equipped with an energy harvester.The input of every binary sensor considers the randomly occurring missing measurements.The differences between the real and estimated inputs of binary sensor are employed to derive useful information in order to address the insufficient information for estimation purpose.The information from neighboring nodes is transmitted only if its energy level is positive,where a random variable is introduced to formulate the energy level.By means of the available information,distributed estimator is constructed for each binary sensor and the desirable performance constraints is given for the dynamic characteristics of estimation errors within anite time horizon.Sucient conditions are established for the existence of desired distribution estimation quantities through local performance analysis methods.Also,the desired distributed estimator gains are calculated recursively,which means the desirable scalability.Ultimately,the viability and efficiency of the distributed scheme are exhibited through a practical illustration.