Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primar...Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs,targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment.Metabolic abnormalities are commonly observed in patients with Alzheimer's disease.The liver is the primary peripheral organ involved in amyloid-beta metabolism,playing a crucial role in the pathophysiology of Alzheimer's disease.Notably,impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease.In this review,we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism.Furthermore,we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.展开更多
The tree shrew(Tupaia belangeri)has long been proposed as a suitable alternative to non-human primates(NHPs)in biomedical and laboratory research due to its close evolutionary relationship with primates.In recent year...The tree shrew(Tupaia belangeri)has long been proposed as a suitable alternative to non-human primates(NHPs)in biomedical and laboratory research due to its close evolutionary relationship with primates.In recent years,significant advances have facilitated tree shrew studies,including the determination of the tree shrew genome,genetic manipulation using spermatogonial stem cells,viral vector-mediated gene delivery,and mapping of the tree shrew brain atlas.However,the limited availability of tree shrews globally remains a substantial challenge in the field.Additionally,determining the key questions best answered using tree shrews constitutes another difficulty.Tree shrew models have historically been used to study hepatitis B virus(HBV)and hepatitis C virus(HCV)infection,myopia,and psychosocial stress-induced depression,with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases.Despite these efforts,the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research.This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model.We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies.The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models,meeting the increasing demands of life science and biomedical research.展开更多
Two-dimensional (2D) ultrathin MoS2-modified black Ti^3+-TiO2 nanotubes were fabricated using an electrospinning-hydrothermal treatment-reduction method.Bare TiO2 nanotubes were fabricated via electrospinning.Then,2D ...Two-dimensional (2D) ultrathin MoS2-modified black Ti^3+-TiO2 nanotubes were fabricated using an electrospinning-hydrothermal treatment-reduction method.Bare TiO2 nanotubes were fabricated via electrospinning.Then,2D MoS2 lamellae were grown on the surface of the nanotubes and Ti^3+/Ov ions were introduced by reduction.The photocatalytic performance of the 2D MoS2/Ti^3+-TiO2 nanotubes was^15 times better than that of TiO2.The HER enhancement of the MoS2/Ti^3+-TiO2 nanotubes can be attributed to the Pt-like behavior of 2D MoS2 and the presence of Ti^3+-ions,which facilitated the quick diffusion of the photogenerated electrons to water,reducing the H2 activation barrier.The presence of Ov ions in the nanotubes and their hollow structure increased their solar utilization.展开更多
In this study, the effects of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt on soil microbial communities and disease resist- ance of tobacco were investigated by field experiment. T...In this study, the effects of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt on soil microbial communities and disease resist- ance of tobacco were investigated by field experiment. The results showed that the incidence of tobacco bacterial wilt in bio-organic fertilizer treatments (T3 and T4) decreased remarkably among four treatments in the field. Compared with the local conventional fertilization group, the incidence of tobacco bacterial wilt was re- duced by 21.9% and 25.0% in T3 and T4, respectively ; the yield of flue-cured tobacco was improved by 5.7% and 5.3%, respectively ; the proportion of mid- high grade tobacco leaves increased by 2.3% and 2.6%, respectively. After application of bio-organie fertilizer with antagonistic bacteria against tobacco bacterial wilt, rhizosphere soil microbial communities exhibited vast amount and abundant species ; the amount of rhizosphere soil bacteria of infected tobacco plants was im- proved by 218.5% with fewer species. It could be concluded that the application of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt could improve the ecological environment of tobacco field, inhibit the growth of pathogenic bacteria, decrease the incidence of tobacco bacterial wilt, and enhance the quality of flue-cured tobacco. This study laid the foundation for further ecological prevention and control of soil-borne diseases of tobacco.展开更多
The characteristics of soil holding capacity for different shrub-grass patterns are important to research the mechanisms regulating vegetation on slopes.The objective of this study was to describe the characteristics ...The characteristics of soil holding capacity for different shrub-grass patterns are important to research the mechanisms regulating vegetation on slopes.The objective of this study was to describe the characteristics and mecha-nisms of soil erosion and hydraulic parameters under differ-ent vegetation patterns in the Pisha sandstone area of Inner Mongolia on lands of 8°slope gradient.We carried out field scouring experiments on five different shrub-grass patterns as treatments,viz no shrubs(GL),shrubs on the upper part of the slope(SU),middle part of the slope(SM)and lower part of the slope(SL).We designated bare slope(BL)as the control.We employed three different water flow rates(15,20,30 L·min^(−1)).Our results showed that the contribution of plant root systems to slope sediment reduction ranged from 64 to 84%.The root systems proved to be the main contributing factor to reduction of erosion by vegetation.The relationship between soil detachment rate,stream flow power,and flow unit stream power under different scouring discharge rates showed that soil detachment declined in rank order as:BL>GL>SU>SM>SL.The SL pat-tern had the lowest soil detachment rate(0.098 g·m^(−2)·s^(−1)),flow stream power(2.371 W·m^(−2)),flow unit stream power(0.165 m·s^(−1))and flow shear stress(16.986 Pa),and proved to be the best erosion combating pattern.The results of decision coefficient and path analysis showed that stream power was the most important hydraulic parameter for describing soil detachment rate.The combination of stream power and shear stress,namely Dr=0.1ω−0.03τ−0.56(R^(2)=0.924),most accurately simulated the soil detachment characteristics on slopes.Our study suggests that the risk of soil ero-sion can be reduced by planting shrub-grass mixes on these slopes.Under the conditions of limited water resources and economy,the benefit of sediment reduction can be maxi-mized by planting shrubbery on the lower parts of slopes.展开更多
Various types of radars with different horizontal and vertical detection ranges are deployed in China, particularly over complex terrain where radar blind zones are common. In this study, a new variational method is d...Various types of radars with different horizontal and vertical detection ranges are deployed in China, particularly over complex terrain where radar blind zones are common. In this study, a new variational method is developed to correct threedimensional radar reflectivity data based on hourly ground precipitation observations. The aim of this method is to improve the quality of observations of various types of radar and effectively assimilate operational Doppler radar observations. A mudslide-inducing local rainstorm is simulated by the WRF model with assimilation of radar reflectivity and radial velocity data using LAPS(Local Analysis and Prediction System). Experiments with different radar data assimilated by LAPS are performed. It is found that when radar reflectivity data are corrected using this variational method and assimilated by LAPS,the atmospheric conditions and cloud physics processes are reasonably described. The temporal evolution of radar reflectivity corrected by the variational method corresponds well to observed rainfall. It can better describe the cloud water distribution over the rainfall area and improve the cloud water analysis results over the central rainfall region. The LAPS cloud analysis system can update cloud microphysical variables and represent the hydrometeors associated with strong convective activities over the rainfall area well. Model performance is improved and the simulation of the dynamical processes and moisture transport is more consistent with observation.展开更多
In the field of developmental neurobiology, accurate and ordered regulation of the cell cycle and apoptosis are crucial factors contributing to the normal formation of the neural tube. Preliminary studies identified s...In the field of developmental neurobiology, accurate and ordered regulation of the cell cycle and apoptosis are crucial factors contributing to the normal formation of the neural tube. Preliminary studies identified several genes involved in the development of neural tube defects. In this study, we established a model of developmental neural tube defects by administration of retinoic acid to pregnant rats. Gene chip hybridization analysis showed that genes related to the cell cycle and apoptosis, signal transduction, transcription and translation regulation, energy and metabolism, heat shock, and matrix and cytoskeletal proteins were all involved in the formation of developmental neural tube defects. Among these, cell cycle-related genes were predominant. Retinoic acid treat-ment caused differential expression of three cell cycle-related genes p57kip2, Cdk5 and Spin, the expression levels of which were downregulated by retinoic acid and upregulated during normal neural tube formation. The results of this study indicate that cell cycle-related genes play an im-portant role in the formation of neural tube defects. P57kip2, Cdk5 and Spin may be critical genes in the pathogenesis of neural tube defects.展开更多
In the natural ecosystem, impulsive diffusion provides a more natural description for population dynamics. In addition, dispersal processes often involve with time delay. In view of these facts, a single species model...In the natural ecosystem, impulsive diffusion provides a more natural description for population dynamics. In addition, dispersal processes often involve with time delay. In view of these facts, a single species model with impulsive diffusion and dispersal delay is formulated. By the stroboscopic map of the discrete dynamical system and other analysis methods, the permanence of the system is investigated. Moreover, sufficient conditions on the existence and uniqueness of a positive periodic solution for the system are derived from the intermediate value theorem. We also demonstrate the global stability of the positive periodic solution by the theory of discrete dynamical system. Finally, numerical simulations and discussion are presented to validate our theoretical results.展开更多
In this study, we determined the expression levels of matrix metalloproteinase-2 and -9 and matrix metalloproteinase tissue inhibitor-1 and -2 in brain tissues and blood plasma of patients undergoing surgery for cereb...In this study, we determined the expression levels of matrix metalloproteinase-2 and -9 and matrix metalloproteinase tissue inhibitor-1 and -2 in brain tissues and blood plasma of patients undergoing surgery for cerebellar arteriovenous malformations or primary epilepsy (control group). Immunohistochemistry and enzyme-linked immunosorbent assay revealed that the expression of matrix metalloproteinase-9 and matrix metalloproteinase tissue inhibitor-1 was significantly higher in patients with cerebellar arteriovenous malformations than in patients with primary epilepsy. The ratio of matrix metalloproteinase-9 to matrix metalloproteinase tissue inhibitor-1 was significantly higher in patients with hemorrhagic cerebellar arteriovenous malformations compared with those with non-hemorrhagic malformations. Matrix metalloproteinase-2 and matrix metalloproteinase tissue inhibitor-2 levels were not significantly changed. These findings indicate that an imbalance of matrix metalloproteinase-9 and matrix metalloproteinase tissue inhibitor-I, resulting in a relative overabundance of matrix metalloproteinase-9, might be the underlying mechanism of hemorrhage of cerebellar arteriovenous malformations.展开更多
To date, little information has been available regarding genes involved in the regulation of embryonic cell development, which participate in retinoic acid-induced neural tube defects in mice. Previous studies have re...To date, little information has been available regarding genes involved in the regulation of embryonic cell development, which participate in retinoic acid-induced neural tube defects in mice. Previous studies have revealed seven differentially expressed genes involved in neural tube developmental defects. However, gene expression and regulation is a complex process. Therefore, gene expression differences between normal and defective neural tubes at 9.5 and 10.5 days were compared. A total of eight differentially expressed genes exhibited coincident alterations at embryonic 9.5 and 10.5 days. In mice with retinoic acid-induced neural tube defects, NeK7, IGFBP5 ZW10, Csf3r, PSMC6, Cdk5, and Rbl expressions were downregulated, but Apoa-4 expression was upregulated. These results were confirmed by Northern blot hybridization. Results suggested that NeK7, IGFBP5, ZW10, Csf3r, PSMC6, Cdk5, Rb1, and Apoa-4 are important regulatory factors involved in neural tube defects.展开更多
BACKGROUND: Neural tube defects can be induced by abnormal factors in vivo or in vitro during development. However, the molecular mechanisms of neural tube defect induction, and the related gene expression and regula...BACKGROUND: Neural tube defects can be induced by abnormal factors in vivo or in vitro during development. However, the molecular mechanisms of neural tube defect induction, and the related gene expression and regulation are still unknown. OBJECTIVE: To compare the differences in gene expression between normal embryos and those with neural tube defects. DESIGN, TIME AND SETTING: A neural development study was performed at the Department of Neurobiology, Third Military Medical University of Chinese PLA between January 2006 and October 2007. MATERIALS: Among 120 adult Kunming mice, 60 pregnant mice were randomly and evenly divided into a retinoic acid group (n = 30) and a normal control group (n =30). The retinoic acid was produced by Sigma, USA, the gene microarray by the Amersham Pharmacia Company, Hong Kong, and the gene sequence was provided by the Incyte database, USA. METHODS: Retinoic acid was administered to prepare models of neural tube defects, and corn oil was similarly administered to the normal control group. Total RNA was extracted from embryonic tissue of the two groups using a Trizol kit, and a cDNA microarray containing 1 100 known genes was used to compare differences in gene expression between the normal control group and the retinoic acid group on embryonic (E) day 10.5 and 11.5. Several differentially expressed genes were randomly selected from the two groups for Northern blotting, to verify the results of the cDNA microarray. MAIN OUTCOME MEASURES: Morphological changes and differential gene expression between the normal control group and the retinoic acid group. RESULTS: Anatomical microscopy demonstrated that an intact closure of the brain was formed in the normal mouse embryos by days E10.5 and E11.5. The cerebral appearance was full and smooth, and the surface of the spine was intact. However, in the retinoic acid group on days E10.5 and E11.5, there were more dead embryos. Morphological malformations typically included non-closure at the top of the cranium and abnormal changes of the metencephalon and face. cDNA microarray analysis suggested that the changes in expression of seven different genes were similar on both days E10.5 and E11.5. These were downregulation of NekT, Igfbp5, Zw10, Csf3r, Psmc6 and Rb 1, and upregulation of Apoa-4. This study also indicated that Cdk5 expression was downregulated in the retinoic acid group on day E11.5. The results of the cDNA microarray analysis were partly confirmed by Northern blotting. CONCLUSION: Cdk5, Nek7, Igfbp5, Zw10, Csf3r, Psmc6, Rb1 and Apoa-4 may be key factors in retinoic acid-induced neural tube defects.展开更多
Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzhei...Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.展开更多
A method of quantification of perfluorinated compounds(PFCs)from atmospheric particulate matter(APM)is described.A single step pretreatment method,selective pressurized liquid extraction(SPLE),was developed to reduce ...A method of quantification of perfluorinated compounds(PFCs)from atmospheric particulate matter(APM)is described.A single step pretreatment method,selective pressurized liquid extraction(SPLE),was developed to reduce the high matrix background and avoid contamination from commonly used multiple sample pretreatment steps.An effective sorbent was selected to purify the PFCs during SPLE,followed by liquid chromatography-tandem mass spectrometry(LC–MS/MS),for quantification of PFCs.Conditions affecting the SPLE efficiency,including temperature,static extraction time,and number of extraction cycles used,were studied.The optimum conditions were found to be 120℃,10 min,and 3 cycles,respectively.LC-MS/MS method was developed to obtain the optimal sensitivity specific to PFCs.The method detection limits(MDLs)were 0.006 to 0.48 ng/g for the PFCs studied and the linear response range was from 0.1 to 100 ng/g.To ensure accurate values were obtained,each step of the experiment was evaluated and controlled to prevent contamination.The optimized method was tested by performing spiking experiments in natural particulate matter matrices and good rates of recovery and reproducibility were obtained for all target compounds.Finally,the method was successfully used to measure 16 PFCs in the APM samples collected in Beijing over five years from 2015 to 2019.It is observed that some PFCs follow the trend of total PFC changes,and can be attributed to the environment influencing events and policy enforcement,while others don't seem to change as much with time of the year or from year to year.展开更多
With the development of bioinformatics,it is easy to obtain information and data about thousands of genes,but the determi nation of the functions of these genes depends on methods for rapid and effective functi on al ...With the development of bioinformatics,it is easy to obtain information and data about thousands of genes,but the determi nation of the functions of these genes depends on methods for rapid and effective functi on al identification.Virus-induced gene sile ncing(VIGS)is a mature method of gene functional identification developed over the last 20 years,which has been widely used in many research fields involving many species.Fruit quality formation is a complex biological process,which is closely related to ripening.Here,we review the progress and contribution of VIGS to our understanding of fruit biology and its advantages and disadvantages in determining gene function.展开更多
Carbon-based materials have been widely used in gaseous pollutant removal because of their sufficient surface functional groups;however,its removal efficiency for elemental mercury(Hg^(0))is low.In this study,we fabri...Carbon-based materials have been widely used in gaseous pollutant removal because of their sufficient surface functional groups;however,its removal efficiency for elemental mercury(Hg^(0))is low.In this study,we fabricated biomass using a chelated coupled pyrolysis strategy and further constructed the regulated adsorption sites for gaseous Hg^(0) uptake.A series of Mnδ-N_(2)O_(2)/BC with different manganese cluster sizes demonstrated that manganese clusters anchored on biochar acted as highly active and durable adsorbents for Hg^(0) immobilization,which increased the adsorption efficiency of Hg^(0) by up to 50%.Shrimp-and crab-based biochar adsorbents exhibited excellent Hg^(0) removal because of their chitosan-like structure.In particular,small Mn clusters and oxygen species around the defect led to a boost in the Hg^(0) adsorption by carbon.The results of density functional theory calculation revealed that the presence of oxygen in the carbon skeleton can tune the electrons of small-sized Mn clusters,thereby promoting the affinity of mercury atoms.The newly developed Mnδ-N_(2)O_(2)/BC_(shrimp) had an adsorption capacity of 7.98-11.52 mg g^(−1) over a broad temperature range(50-200℃)and showed a high tolerance to different industrial flue gases(H_(2)O,NO,HCl,and SO_(2)).These results provide novel green and low-carbon disposal methods for biomass resource utilization and industrial Hg^(0) emission control.展开更多
基金financially supported by the Science and Technology Innovation Program of Hunan Province,No.2022RC1220(to WP)China Postdoctoral Science Foundation,No.2022M711733(to ZZ)+2 种基金the National Natural Science Foundation of China,No.82160920(to ZZ)Hebei Postdoctoral Scientific Research Project,No.B2022003040(to ZZ)Hunan Flagship Department of Integrated Traditional Chinese and Western Medicine(to WP)。
文摘Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs,targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment.Metabolic abnormalities are commonly observed in patients with Alzheimer's disease.The liver is the primary peripheral organ involved in amyloid-beta metabolism,playing a crucial role in the pathophysiology of Alzheimer's disease.Notably,impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease.In this review,we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism.Furthermore,we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.
基金supported by the STI2030-Major Projects(2021ZD0200900 to Y.G.Y.)"Light of West China" Program of the Chinese Academy of Sciences(xbzg-zdsys-202302 to Y.G.Y.)
文摘The tree shrew(Tupaia belangeri)has long been proposed as a suitable alternative to non-human primates(NHPs)in biomedical and laboratory research due to its close evolutionary relationship with primates.In recent years,significant advances have facilitated tree shrew studies,including the determination of the tree shrew genome,genetic manipulation using spermatogonial stem cells,viral vector-mediated gene delivery,and mapping of the tree shrew brain atlas.However,the limited availability of tree shrews globally remains a substantial challenge in the field.Additionally,determining the key questions best answered using tree shrews constitutes another difficulty.Tree shrew models have historically been used to study hepatitis B virus(HBV)and hepatitis C virus(HCV)infection,myopia,and psychosocial stress-induced depression,with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases.Despite these efforts,the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research.This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model.We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies.The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models,meeting the increasing demands of life science and biomedical research.
基金supported by the National Natural Science Foundation of China(Grant Nos.51672249,51802282,and 11804301)the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LQ17F040004 and LY17E020001)Fundamental Research Funds of Zhejiang Sci-Tech University(No.2019Q062)。
文摘Two-dimensional (2D) ultrathin MoS2-modified black Ti^3+-TiO2 nanotubes were fabricated using an electrospinning-hydrothermal treatment-reduction method.Bare TiO2 nanotubes were fabricated via electrospinning.Then,2D MoS2 lamellae were grown on the surface of the nanotubes and Ti^3+/Ov ions were introduced by reduction.The photocatalytic performance of the 2D MoS2/Ti^3+-TiO2 nanotubes was^15 times better than that of TiO2.The HER enhancement of the MoS2/Ti^3+-TiO2 nanotubes can be attributed to the Pt-like behavior of 2D MoS2 and the presence of Ti^3+-ions,which facilitated the quick diffusion of the photogenerated electrons to water,reducing the H2 activation barrier.The presence of Ov ions in the nanotubes and their hollow structure increased their solar utilization.
基金Supported by Project of Nanping Tobacco Monopoly Bureau(NYK2012-14-3)
文摘In this study, the effects of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt on soil microbial communities and disease resist- ance of tobacco were investigated by field experiment. The results showed that the incidence of tobacco bacterial wilt in bio-organic fertilizer treatments (T3 and T4) decreased remarkably among four treatments in the field. Compared with the local conventional fertilization group, the incidence of tobacco bacterial wilt was re- duced by 21.9% and 25.0% in T3 and T4, respectively ; the yield of flue-cured tobacco was improved by 5.7% and 5.3%, respectively ; the proportion of mid- high grade tobacco leaves increased by 2.3% and 2.6%, respectively. After application of bio-organie fertilizer with antagonistic bacteria against tobacco bacterial wilt, rhizosphere soil microbial communities exhibited vast amount and abundant species ; the amount of rhizosphere soil bacteria of infected tobacco plants was im- proved by 218.5% with fewer species. It could be concluded that the application of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt could improve the ecological environment of tobacco field, inhibit the growth of pathogenic bacteria, decrease the incidence of tobacco bacterial wilt, and enhance the quality of flue-cured tobacco. This study laid the foundation for further ecological prevention and control of soil-borne diseases of tobacco.
基金supported financially by the National Natural Science Foundation of China (41701327,31870708,51879155,515 79157 and 5177915 6)the National Key Research and Development Program of China(2016YFC0500504)the Inner Mongolia Natural Science Foundation (2017BS0405)
文摘The characteristics of soil holding capacity for different shrub-grass patterns are important to research the mechanisms regulating vegetation on slopes.The objective of this study was to describe the characteristics and mecha-nisms of soil erosion and hydraulic parameters under differ-ent vegetation patterns in the Pisha sandstone area of Inner Mongolia on lands of 8°slope gradient.We carried out field scouring experiments on five different shrub-grass patterns as treatments,viz no shrubs(GL),shrubs on the upper part of the slope(SU),middle part of the slope(SM)and lower part of the slope(SL).We designated bare slope(BL)as the control.We employed three different water flow rates(15,20,30 L·min^(−1)).Our results showed that the contribution of plant root systems to slope sediment reduction ranged from 64 to 84%.The root systems proved to be the main contributing factor to reduction of erosion by vegetation.The relationship between soil detachment rate,stream flow power,and flow unit stream power under different scouring discharge rates showed that soil detachment declined in rank order as:BL>GL>SU>SM>SL.The SL pat-tern had the lowest soil detachment rate(0.098 g·m^(−2)·s^(−1)),flow stream power(2.371 W·m^(−2)),flow unit stream power(0.165 m·s^(−1))and flow shear stress(16.986 Pa),and proved to be the best erosion combating pattern.The results of decision coefficient and path analysis showed that stream power was the most important hydraulic parameter for describing soil detachment rate.The combination of stream power and shear stress,namely Dr=0.1ω−0.03τ−0.56(R^(2)=0.924),most accurately simulated the soil detachment characteristics on slopes.Our study suggests that the risk of soil ero-sion can be reduced by planting shrub-grass mixes on these slopes.Under the conditions of limited water resources and economy,the benefit of sediment reduction can be maxi-mized by planting shrubbery on the lower parts of slopes.
基金supported by a National Department of Public Benefit Research Foundation of China(Grant No.GYHY201406001)NSFC(National Science Foundation of China)project(Grant Nos.41105072,41130960,41375057and 41375041)Hubei Meteorological Bureau project(Grant No.2016S02)
文摘Various types of radars with different horizontal and vertical detection ranges are deployed in China, particularly over complex terrain where radar blind zones are common. In this study, a new variational method is developed to correct threedimensional radar reflectivity data based on hourly ground precipitation observations. The aim of this method is to improve the quality of observations of various types of radar and effectively assimilate operational Doppler radar observations. A mudslide-inducing local rainstorm is simulated by the WRF model with assimilation of radar reflectivity and radial velocity data using LAPS(Local Analysis and Prediction System). Experiments with different radar data assimilated by LAPS are performed. It is found that when radar reflectivity data are corrected using this variational method and assimilated by LAPS,the atmospheric conditions and cloud physics processes are reasonably described. The temporal evolution of radar reflectivity corrected by the variational method corresponds well to observed rainfall. It can better describe the cloud water distribution over the rainfall area and improve the cloud water analysis results over the central rainfall region. The LAPS cloud analysis system can update cloud microphysical variables and represent the hydrometeors associated with strong convective activities over the rainfall area well. Model performance is improved and the simulation of the dynamical processes and moisture transport is more consistent with observation.
基金supported by the Science and Technology Key Program of Sichuan Provincial Health Ministry,No.080128
文摘In the field of developmental neurobiology, accurate and ordered regulation of the cell cycle and apoptosis are crucial factors contributing to the normal formation of the neural tube. Preliminary studies identified several genes involved in the development of neural tube defects. In this study, we established a model of developmental neural tube defects by administration of retinoic acid to pregnant rats. Gene chip hybridization analysis showed that genes related to the cell cycle and apoptosis, signal transduction, transcription and translation regulation, energy and metabolism, heat shock, and matrix and cytoskeletal proteins were all involved in the formation of developmental neural tube defects. Among these, cell cycle-related genes were predominant. Retinoic acid treat-ment caused differential expression of three cell cycle-related genes p57kip2, Cdk5 and Spin, the expression levels of which were downregulated by retinoic acid and upregulated during normal neural tube formation. The results of this study indicate that cell cycle-related genes play an im-portant role in the formation of neural tube defects. P57kip2, Cdk5 and Spin may be critical genes in the pathogenesis of neural tube defects.
文摘In the natural ecosystem, impulsive diffusion provides a more natural description for population dynamics. In addition, dispersal processes often involve with time delay. In view of these facts, a single species model with impulsive diffusion and dispersal delay is formulated. By the stroboscopic map of the discrete dynamical system and other analysis methods, the permanence of the system is investigated. Moreover, sufficient conditions on the existence and uniqueness of a positive periodic solution for the system are derived from the intermediate value theorem. We also demonstrate the global stability of the positive periodic solution by the theory of discrete dynamical system. Finally, numerical simulations and discussion are presented to validate our theoretical results.
文摘In this study, we determined the expression levels of matrix metalloproteinase-2 and -9 and matrix metalloproteinase tissue inhibitor-1 and -2 in brain tissues and blood plasma of patients undergoing surgery for cerebellar arteriovenous malformations or primary epilepsy (control group). Immunohistochemistry and enzyme-linked immunosorbent assay revealed that the expression of matrix metalloproteinase-9 and matrix metalloproteinase tissue inhibitor-1 was significantly higher in patients with cerebellar arteriovenous malformations than in patients with primary epilepsy. The ratio of matrix metalloproteinase-9 to matrix metalloproteinase tissue inhibitor-1 was significantly higher in patients with hemorrhagic cerebellar arteriovenous malformations compared with those with non-hemorrhagic malformations. Matrix metalloproteinase-2 and matrix metalloproteinase tissue inhibitor-2 levels were not significantly changed. These findings indicate that an imbalance of matrix metalloproteinase-9 and matrix metalloproteinase tissue inhibitor-I, resulting in a relative overabundance of matrix metalloproteinase-9, might be the underlying mechanism of hemorrhage of cerebellar arteriovenous malformations.
基金Scientific and Technological Projects of Sichuan Provincial Health Department, No. 080128
文摘To date, little information has been available regarding genes involved in the regulation of embryonic cell development, which participate in retinoic acid-induced neural tube defects in mice. Previous studies have revealed seven differentially expressed genes involved in neural tube developmental defects. However, gene expression and regulation is a complex process. Therefore, gene expression differences between normal and defective neural tubes at 9.5 and 10.5 days were compared. A total of eight differentially expressed genes exhibited coincident alterations at embryonic 9.5 and 10.5 days. In mice with retinoic acid-induced neural tube defects, NeK7, IGFBP5 ZW10, Csf3r, PSMC6, Cdk5, and Rbl expressions were downregulated, but Apoa-4 expression was upregulated. These results were confirmed by Northern blot hybridization. Results suggested that NeK7, IGFBP5, ZW10, Csf3r, PSMC6, Cdk5, Rb1, and Apoa-4 are important regulatory factors involved in neural tube defects.
基金Supported by:the Scientific and Technological Foundation of Sichuan Public Health Bureau in 2008.No. 080128
文摘BACKGROUND: Neural tube defects can be induced by abnormal factors in vivo or in vitro during development. However, the molecular mechanisms of neural tube defect induction, and the related gene expression and regulation are still unknown. OBJECTIVE: To compare the differences in gene expression between normal embryos and those with neural tube defects. DESIGN, TIME AND SETTING: A neural development study was performed at the Department of Neurobiology, Third Military Medical University of Chinese PLA between January 2006 and October 2007. MATERIALS: Among 120 adult Kunming mice, 60 pregnant mice were randomly and evenly divided into a retinoic acid group (n = 30) and a normal control group (n =30). The retinoic acid was produced by Sigma, USA, the gene microarray by the Amersham Pharmacia Company, Hong Kong, and the gene sequence was provided by the Incyte database, USA. METHODS: Retinoic acid was administered to prepare models of neural tube defects, and corn oil was similarly administered to the normal control group. Total RNA was extracted from embryonic tissue of the two groups using a Trizol kit, and a cDNA microarray containing 1 100 known genes was used to compare differences in gene expression between the normal control group and the retinoic acid group on embryonic (E) day 10.5 and 11.5. Several differentially expressed genes were randomly selected from the two groups for Northern blotting, to verify the results of the cDNA microarray. MAIN OUTCOME MEASURES: Morphological changes and differential gene expression between the normal control group and the retinoic acid group. RESULTS: Anatomical microscopy demonstrated that an intact closure of the brain was formed in the normal mouse embryos by days E10.5 and E11.5. The cerebral appearance was full and smooth, and the surface of the spine was intact. However, in the retinoic acid group on days E10.5 and E11.5, there were more dead embryos. Morphological malformations typically included non-closure at the top of the cranium and abnormal changes of the metencephalon and face. cDNA microarray analysis suggested that the changes in expression of seven different genes were similar on both days E10.5 and E11.5. These were downregulation of NekT, Igfbp5, Zw10, Csf3r, Psmc6 and Rb 1, and upregulation of Apoa-4. This study also indicated that Cdk5 expression was downregulated in the retinoic acid group on day E11.5. The results of the cDNA microarray analysis were partly confirmed by Northern blotting. CONCLUSION: Cdk5, Nek7, Igfbp5, Zw10, Csf3r, Psmc6, Rb1 and Apoa-4 may be key factors in retinoic acid-induced neural tube defects.
基金financially supported by the National Natural Science Foundation of China,No.823 74552 (to WP)the Science and Technology Innovation Program of Hunan Province,No.2022RC1220 (to WP)+1 种基金the Natural Science Foundation of Hunan Province of China,Nos.2020JJ4803 (to WP),2022JJ40723 (to MY)the Scientific Research Launch Project for New Employees of the Second Xiangya Hospital of Central South University (to MY)
文摘Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.
基金supported by the NQI Project of National key R&D Program of China (No.2016YFF0201102)the project for the“Development of analytical method and certified reference materials for tracing air pollutant source” (No.21AKY1514)from the National Institute of Metrology,Beijing,China。
文摘A method of quantification of perfluorinated compounds(PFCs)from atmospheric particulate matter(APM)is described.A single step pretreatment method,selective pressurized liquid extraction(SPLE),was developed to reduce the high matrix background and avoid contamination from commonly used multiple sample pretreatment steps.An effective sorbent was selected to purify the PFCs during SPLE,followed by liquid chromatography-tandem mass spectrometry(LC–MS/MS),for quantification of PFCs.Conditions affecting the SPLE efficiency,including temperature,static extraction time,and number of extraction cycles used,were studied.The optimum conditions were found to be 120℃,10 min,and 3 cycles,respectively.LC-MS/MS method was developed to obtain the optimal sensitivity specific to PFCs.The method detection limits(MDLs)were 0.006 to 0.48 ng/g for the PFCs studied and the linear response range was from 0.1 to 100 ng/g.To ensure accurate values were obtained,each step of the experiment was evaluated and controlled to prevent contamination.The optimized method was tested by performing spiking experiments in natural particulate matter matrices and good rates of recovery and reproducibility were obtained for all target compounds.Finally,the method was successfully used to measure 16 PFCs in the APM samples collected in Beijing over five years from 2015 to 2019.It is observed that some PFCs follow the trend of total PFC changes,and can be attributed to the environment influencing events and policy enforcement,while others don't seem to change as much with time of the year or from year to year.
文摘With the development of bioinformatics,it is easy to obtain information and data about thousands of genes,but the determi nation of the functions of these genes depends on methods for rapid and effective functi on al identification.Virus-induced gene sile ncing(VIGS)is a mature method of gene functional identification developed over the last 20 years,which has been widely used in many research fields involving many species.Fruit quality formation is a complex biological process,which is closely related to ripening.Here,we review the progress and contribution of VIGS to our understanding of fruit biology and its advantages and disadvantages in determining gene function.
基金National Natural Science Foundation of China(No.52070129).
文摘Carbon-based materials have been widely used in gaseous pollutant removal because of their sufficient surface functional groups;however,its removal efficiency for elemental mercury(Hg^(0))is low.In this study,we fabricated biomass using a chelated coupled pyrolysis strategy and further constructed the regulated adsorption sites for gaseous Hg^(0) uptake.A series of Mnδ-N_(2)O_(2)/BC with different manganese cluster sizes demonstrated that manganese clusters anchored on biochar acted as highly active and durable adsorbents for Hg^(0) immobilization,which increased the adsorption efficiency of Hg^(0) by up to 50%.Shrimp-and crab-based biochar adsorbents exhibited excellent Hg^(0) removal because of their chitosan-like structure.In particular,small Mn clusters and oxygen species around the defect led to a boost in the Hg^(0) adsorption by carbon.The results of density functional theory calculation revealed that the presence of oxygen in the carbon skeleton can tune the electrons of small-sized Mn clusters,thereby promoting the affinity of mercury atoms.The newly developed Mnδ-N_(2)O_(2)/BC_(shrimp) had an adsorption capacity of 7.98-11.52 mg g^(−1) over a broad temperature range(50-200℃)and showed a high tolerance to different industrial flue gases(H_(2)O,NO,HCl,and SO_(2)).These results provide novel green and low-carbon disposal methods for biomass resource utilization and industrial Hg^(0) emission control.