期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
Effects of Intermittent Hypoxia Exposure on Symptoms of Chronic Fatigue Syndrome in Repeated Restraint Stress and Forced Swimming Induced-Mouse Model
1
作者 Paul Roger Mabounda Kounga Yajun Zhang +2 位作者 hongxia wang Ru wang Peijie Chen 《Journal of Biosciences and Medicines》 2024年第10期304-315,共12页
Background: Chronic fatigue syndrome (CFS) shows as its main symptoms debilitating fatigue that is not relieved by physiological rest, depression, inflammation, learning disability and memory impairment. But, intermit... Background: Chronic fatigue syndrome (CFS) shows as its main symptoms debilitating fatigue that is not relieved by physiological rest, depression, inflammation, learning disability and memory impairment. But, intermittent hypoxia, consisting of alternating exposure to hypoxia and normoxia, plays a very important role in improving CFS. However, the essential components for improving learning and memory in CFS patients as well as their mechanism are largely unknown. Objectives: This study aims to analyze the effects of 12% and 15% hypoxia on the expression of alpha tumor necrosis factor (TNF-α) and nuclear factor kappa B (NF-κB) in CFS induced-mouse model for clarifying the effects on the learning and memory function. Methods: A total of 48 type IC mice were used. The CFS mouse model was established using restrained stress and repeated forced swimming. Treatment of CFS was done by exposing CFS mice to intermittent hypoxia at 12% and 15%. The effects of intermittent hypoxia on learning and memory as well as its mechanism of action on inflammation were tested respectively with the Morris test, the SDS page, the immunohistochemistry technique and the Nissl staining. Results: We found that 12% and 15% intermittent hypoxia exposure improved learning capacity and memory of CFS induced-mice. SDS page showed that CFS caused higher TNF-α expression. By exposing CFS mice to 12% and 15% intermittent hypoxia, TNF-α expression decreased significantly, with a much better effect at 15%. Both TNF-α and NF-κB increased in CFS state and decreased after treatment with intermittent hypoxia. Conclusion: Intermittent hypoxia improves learning capacity and memory. It acted by decreasing NF-κB come to down-regulating TNF-α and ameliorates learning capacity and memory impairment in CFS mice. 展开更多
关键词 Chronic Fatigue Syndrome Intermittent Hypoxia STRESS Learning Capacity MEMORY
下载PDF
Cooperation between single atom catalyst and support to promote nitrogen electroreduction to ammonia:A theoretical insight
2
作者 Wanying Guo Siyao wang +2 位作者 hongxia wang Qinghai Cai Jingxiang Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期336-344,共9页
The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing mul... The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing multiple intermediates and pathways.Herein,we utilized defective BC_(3)monolayer-supported SACs as a prototype to investigate the cooperative effects of SACs and their support on the catalytic performance of the nitrogen reduction reaction(NRR)for ammonia(NH_(3))production.The results showed that these SACs can be firmly stabilized on these defective BC_(3)supports with high stability against aggregation.Furthermore,co-activation of the inert N_(2)reactant was observed in certain embedded SACs and their neighboring B atoms on certain BC3 sheets due to the noticeable charge transfer and significant N–N bond elongation.Our high-throughput screening revealed that the Mo/DV_(CC)and W/DV_(CC)exhibit superior NRR catalytic performance,characterized by a low limiting potential of−0.33 and−0.43 V,respectively,which can be further increased under acid conditions based on the constant potential method.Moreover,varying NRR catalytic activities can be attributed to the differences in the valence state of active sites.Remarkably,further microkinetic modeling analysis displayed that the turnover frequency of N_(2)–to–NH_(3)conversion on Mo/DV_(CC)is as large as 1.20×10^(−3)s^(−1)site^(−1) at 700 K and 100 bar,thus guaranteeing its ultra-fast reaction rate.Our results not only suggest promising advanced electrocatalysts for NRR but also offer an effective avenue to regulate the electrocatalytic performance via the co-catalytic metal–support interactions. 展开更多
关键词 CO-CATALYSIS Single atom catalyst Nitrogen reduction DFT computations
下载PDF
Energy Blockchain in Smart Communities: Towards Affordable Clean Energy Supply for the Built Environment
3
作者 Mingguan Zhao Lida Liao +5 位作者 Penglong Liang Meng Li Xinsheng Dong Yang Yang hongxia wang Zhenhao Zhang 《Energy Engineering》 EI 2024年第8期2313-2330,共18页
The rapid growth of distributed renewable energy penetration is promoting the evolution of the energy system toward decentralization and decentralized and digitized smart grids.This study was based on energy blockchai... The rapid growth of distributed renewable energy penetration is promoting the evolution of the energy system toward decentralization and decentralized and digitized smart grids.This study was based on energy blockchain,and developed a dual-biding mechanism based on the real-time energy surplus and demand in the local smart grid,which is expected to enable reliable,affordable,and clean energy supply in smart communities.In the proposed system,economic benefits could be achieved by replacing fossil-fuel-based electricity with the high penetration of affordable solar PV electricity.The reduction of energy surplus realized by distributed energy production and P2P energy trading,within the smart grid results in less transmission loss and lower requirements for costly upgrading of existing grids.By adopting energy blockchain and smart contract technologies,energy secure trading with a low risk of privacy leakage could be accommodated.The prototype is examined through a case study,and the feasibility and efficiency of the proposed mechanism are further validated by scenario analysis. 展开更多
关键词 Solar PV smart community energy blockchain P2P energy trading smart grid affordable energy supply
下载PDF
Analysis of the Effect of Implementing Humanized Care Service in Severe ICU Patients
4
作者 hongxia wang 《Journal of Clinical and Nursing Research》 2024年第3期176-180,共5页
Objective:To analyze the effect of implementing humanized nursing service intervention for severe patients in the intensive care unit(ICU).Methods:A hundred severely ill ICU patients who were treated from January 2021... Objective:To analyze the effect of implementing humanized nursing service intervention for severe patients in the intensive care unit(ICU).Methods:A hundred severely ill ICU patients who were treated from January 2021 to December 2022 were selected and grouped into a control group and an observation group.The control group adopted routine nursing services and the observation group adopted humanized nursing services.The nursing outcome of the two groups was analyzed.Results:The nursing risk incidence of the observation group was lower than that of the control group(P<0.05).The scale of comfort and nursing satisfaction in the observation group was higher than those in the control group(P<0.05).Conclusion:The implementation of a humanized care service for ICU patients lowered nursing risk incidences and increased the physical comfort and nursing satisfaction of these patients. 展开更多
关键词 ICU Severe patients Humanized nursing service Nursing effect
下载PDF
Efficient CO_(2)Reduction to Formate on CsPbI_(3) Nanocrystals Wrapped with Reduced Graphene Oxide 被引量:2
5
作者 Minh Tam Hoang Chen Han +13 位作者 Zhipeng Ma Xin Mao Yang Yang Sepideh Sadat Madani Paul Shaw Yongchao Yang Lingyi Peng Cui Ying Toe Jian Pan Rose Amal Aijun Du Tuquabo Tesfamichael Zhaojun Han hongxia wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期1-14,共14页
Transformation of greenhouse gas(CO_(2))into valuable chemicals and fuels is a promising route to address the global issues of climate change and the energy crisis.Metal halide perovskite catalysts have shown their po... Transformation of greenhouse gas(CO_(2))into valuable chemicals and fuels is a promising route to address the global issues of climate change and the energy crisis.Metal halide perovskite catalysts have shown their potential in promoting CO_(2)reduction reaction(CO_(2)RR),however,their low phase stability has limited their application perspective.Herein,we present a reduced graphene oxide(rGO)wrapped CsPbI_3 perovskite nanocrystal(NC)CO_(2)RR catalyst(CsPbI_3/rGO),demonstrating enhanced stability in the aqueous electrolyte.The CsPbI_3/rGO catalyst exhibited>92%Faradaic efficiency toward formate production at a CO_(2)RR current density of~12.7 mA cm^(-2).Comprehensive characterizations revealed the superior performance of the CsPbI_3/rGO catalyst originated from the synergistic effects between the CsPbI_3 NCs and rGO,i.e.,rGO stabilized theα-CsPbI_3 phase and tuned the charge distribution,thus lowered the energy barrier for the protonation process and the formation of~*HCOO intermediate,which resulted in high CO_(2)RR selectivity toward formate.This work shows a promising strategy to rationally design robust metal halide perovskites for achieving efficient CO_(2)RR toward valuable fuels. 展开更多
关键词 Perovskite nanocrystal ELECTROCATALYST Inorganic perovskite CO_(2)reduction Formate production
下载PDF
Effects of stress loading mode on microstructures and properties of Mg-9Gd-2Nd-0.5Zr alloy treated by creep aging
6
作者 Simin Shen Yongpeng Zhuang +6 位作者 Ming Li hongxia wang Lifei wang Weili Cheng Hang Li Hua Hou Kwangseon Shin 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4263-4273,共11页
Creep aging forming(CAF) is a potential process used to manufacture large integral components of magnesium(Mg) alloys. The selected stress plays a crucial role in creep aging processes but the mechanism by which stres... Creep aging forming(CAF) is a potential process used to manufacture large integral components of magnesium(Mg) alloys. The selected stress plays a crucial role in creep aging processes but the mechanism by which stress loading method affects creep aging of Mg alloys is still unclear. In this paper, the microstructural evolution of precipitated phases and precipitation-free zones(PFZ) at grain boundaries with different stress loading modes(unstressed, unidirectional tensile stress, and cyclic stress) at 250 ℃ were investigated along with changes in mechanical properties. The results showed that the addition of stress during aging effectively promoted the precipitation of precipitated phases, while unaffecting grain size. Unidirectional tensile stress caused directional growth of β phase([1010]), as well as rotation of weave towards the basal plane texture, resulting in namely stress orientation effect. Solute atoms diffused in the direction of tensile stress while vacancies moved perpendicular to the direction of tensile stress, resulting in PFZ at grain boundaries(157.06 nm). By contrast, cyclic stresses led to the growth of β phase in three directions([1010], [1100] and [0110]). The solute atoms and vacancies were uniformly distributed in the Mg matrix instead of directional diffusion, effectively reducing the width of PFZ(112.39 nm) at the grain boundary. These features significantly improved the mechanical properties of alloy specimens after cyclic stress creep aging when compared to unidirectional stress creep aging, with yield strength(YS), ultimate tensile strength(UTS), and elongation(EL) enhanced from 171.6 MPa, 305.5 MPa, and 4.4%to 174.8 MPa, 326.3 MPa, and 6.9%, respectively. 展开更多
关键词 Mg-9Gd-2Nd-0.5Zr alloy Precipitated phase Stress orientation effect PFZ Mechanical properties
下载PDF
Unveiling the planar deformation mechanisms for improved formability in pre-twinned AZ31 Mg alloy sheet at warm temperature
7
作者 Xiaohuan Pan Lifei wang +8 位作者 Pengbin Lu Hua Zhang Guangsheng Huang Liuwei Zheng Bin Xing Weili Cheng hongxia wang Wei Liang Kwang Seon Shin 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4659-4678,共20页
To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11... To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11.30 mm.The mechanisms for the improved formability and the deformation behaviors during the planar stretch forming are systematically investigated based on the planar stress states.The Schmid factor for deformation mechanisms are calculated,the results reveal that planar stress states extremely affect the Schmid factor for{10-12}twinning.The detwinning is activated and the prismatic slip is enhanced in the pre-twinned sheet,especially under the planar extension stress state in the outer region.Consequently,the thickness-direction strain is accommodated better.The dynamic recrystallization(DRX)type is continuous DRX(CDRX)regardless of the planar stress state.However,the CDRX degree is greater under the planar extension stress state.Some twin lattices deviate from the perfect{10-12}twinning relation due to the planar compression stress state and the CDRX.The basal texture is weakened when the planar stress state tends to change the texture components. 展开更多
关键词 AZ31 Mg alloy sheet Planar stretch forming Planar stress states Continuous dynamic recrystallization {10-12}tensile twinning
下载PDF
Machine Learning Design of Aluminum-Lithium Alloys with High Strength
8
作者 hongxia wang Zhiqiang Duan +2 位作者 Qingwei Guo Yongmei Zhang Yuhong Zhao 《Computers, Materials & Continua》 SCIE EI 2023年第11期1393-1409,共17页
Due to the large unexplored compositional space,long development cycle,and high cost of traditional trial-anderror experiments,designing high strength aluminum-lithium alloys is a great challenge.This work establishes... Due to the large unexplored compositional space,long development cycle,and high cost of traditional trial-anderror experiments,designing high strength aluminum-lithium alloys is a great challenge.This work establishes a performance-oriented machine learning design strategy for aluminum-lithium alloys to simplify and shorten the development cycle.The calculation results indicate that radial basis function(RBF)neural networks exhibit better predictive ability than back propagation(BP)neural networks.The RBF neural network predicted tensile and yield strengths with determination coefficients of 0.90 and 0.96,root mean square errors of 30.68 and 25.30,and mean absolute errors of 28.15 and 19.08,respectively.In the validation experiment,the comparison between experimental data and predicted data demonstrated the robustness of the two neural network models.The tensile and yield strengths of Al-2Li-1Cu-3Mg-0.2Zr(wt.%)alloy are 17.8 and 3.5 MPa higher than those of the Al-1Li4.5Cu-0.2Zr(wt.%)alloy,which has the best overall performance,respectively.It demonstrates the reliability of the neural network model in designing high strength aluminum-lithium alloys,which provides a way to improve research and development efficiency. 展开更多
关键词 Aluminum-lithium alloys neural network tensile strength yield strength
下载PDF
Earth-abundant amorphous catalysts for electrolysis of water 被引量:10
9
作者 Wence Xu hongxia wang 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第6期991-1005,共15页
The generation of hydrogen through the electrolysis of water has attracted attention as a promising way to produce and store energy using renewable energy sources.In this process,a catalyst is very important to achiev... The generation of hydrogen through the electrolysis of water has attracted attention as a promising way to produce and store energy using renewable energy sources.In this process,a catalyst is very important to achieve a high‐energy conversion efficiency for the electrolysis of water.A good catalyst for water electrolysis should exhibit high catalytic activity,good stability,low cost and good scalability.Much research has been devoted to developing efficient catalysts for both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Traditionally,it has been accepted that a material with high crystallinity is important to serve as a good catalyst for HER and/or OER.Recently,catalysts for HER and/or OER in the electrolysis of water splitting based on amorphous materials have received much interest in the scientific community owing to the abundant unsaturated active sites on the amorphous surface,which form catalytic centers for the reaction of the electrolysis of water.We summarize the recent advances of amorphous catalysts for HER,OER and overall water splitting by electrolysis and the related fundamental chemical reactions involved in the electrolysis of water.The current challenges confronting the electrolysis of water and the development of more efficient amorphous catalysts are also discussed. 展开更多
关键词 Amorphous catalyst Non‐noble metal material Hydrogen evolution reaction Oxygen evolution reaction Overall water splitting
下载PDF
Texture evolution induced by twinning and dynamic recrystallization in dilute Mg-1Sn-1Zn-1Al alloy during hot compression 被引量:7
10
作者 Meijuan Hao Weili Cheng +4 位作者 Lifei wang Ehsan Mostaed Liping Bian hongxia wang Xiaofeng Niu 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第3期899-909,共11页
Texture evolution of an extruded dilute Mg-1Sn-1Zn-1Al alloy was thoroughly investigated based on the twinning and dynamic recrystallization(DRX)behavior via hot compression at a strain rate of 10 s^(-1)and temperatur... Texture evolution of an extruded dilute Mg-1Sn-1Zn-1Al alloy was thoroughly investigated based on the twinning and dynamic recrystallization(DRX)behavior via hot compression at a strain rate of 10 s^(-1)and temperature of 225℃.It was found that the types and intensities of the texture are strongly dependent on the fraction of twins and DRX modes as well as regions where sub-grain boundaries(sub-GBs)are intensively accumulated.At the initial stage of deformation,the formation of compression direction(CD)-tilted basal texture was mainly determined by the occurrence of{101^(-)2}extension twins.As the strain increases,the variation in the texture intensity was greatly dominated by the DRX modes but the type of main texture remained unchanged.These findings are of great importance for texture modification of wrought Mg-Sn-based alloys during post-deformation. 展开更多
关键词 Mg-1Sn-1Zn-1Al Hot deformation TWINNING Dynamic recrystallization Texture
下载PDF
Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys 被引量:5
11
作者 Liuwei Zheng Huihui Nie +2 位作者 Wei Liang hongxia wang Yide wang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2016年第2期115-122,共8页
To improve the homogeneity and rolling formability of as-cast AZ91 magnesium,the effects of pre-homogenizing treatment on microstructure evolution,deformation mechanism,mechanical properties and tensile fracture morph... To improve the homogeneity and rolling formability of as-cast AZ91 magnesium,the effects of pre-homogenizing treatment on microstructure evolution,deformation mechanism,mechanical properties and tensile fracture morphology of hot-rolled AZ91 magnesium alloy were studied.The results showed that the amount of coarseβ-Mg17Al12 phase decreases dramatically,being distributed along the grain boundaries as small strips after homogenizing.Twining plays a dominant role in the deformation mechanism of AZ91 alloys in the experimental condition,while dynamic recrystallization(DRX)considerably occurred in homogenized-rolled alloys,contributed to microstructure uniformity andβ-Mg17Al12 phase precipitated refinement.The tensile strength of homogenized-rolled AZ91 alloys increases dramatically with elongation declining slightly in contrast to homogenized alloys.The fracture surface of homogenized-rolled specimen exhibits more ductile fracture with the manifestation of a large amount of dimples distributing higher density in matrix,while the micro cracks are prone to initiate around the Mg/Mg17Al12 phase interface and grain boundaries owing to the fragile interface bonding of two phases. 展开更多
关键词 HOMOGENIZATION AZ91 magnesium alloys Twining Hot rolling β-Mg17Al12 phase
下载PDF
All-solid-state flexible asymmetric supercapacitors with high energy and power densities based on NiCo_2S_4@MnS and active carbon 被引量:3
12
作者 Zhiguo Zhang Xiao Huang +3 位作者 Huan Li hongxia wang Yingyuan Zhao Tingli Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1260-1266,共7页
Electrode material based on a novel core–shell structure consisting of NiCoS(NCS) solid fiber core and Mn S(MS) sheet shell(NCS@MS) in situ grown on carbon cloth(CC) has been successfully prepared by a simple... Electrode material based on a novel core–shell structure consisting of NiCoS(NCS) solid fiber core and Mn S(MS) sheet shell(NCS@MS) in situ grown on carbon cloth(CC) has been successfully prepared by a simple sulfurization-assisted hydrothermal method for high performance supercapacitor. The synthesized NiCoS@Mn S/CC electrode shows high capacitance of 1908.3 F gat a current density of 0.5 A gwhich is higher than those of NiCoSand Mn S at the same current density. A flexible all-solid-state asymmetric supercapacitor(ASC) is constructed by using NiCoS@Mn S/CC as positive electrode, active carbon/CC as negative electrode and KOH/poly(vinyl alcohol)(PVA) as electrolyte. The optimized ASC shows a maximum energy density of 23.3 Wh kgat 1 A g, a maximum power density of about7.5 kw kgat 10 A gand remarkable cycling stability. After 9000 cycles, the ASC still exhibited67.8% retention rate and largely unchanged charge/discharge curves. The excellent electrochemical properties are resulted from the novel core–shell structure of the NiCoS@Mn S/CC electrode, which possesses both high surface area for Faraday redox reaction and superior kinetics of charge transport. The NiCoS@Mn S/CC electrode shows a promising potential for energy storage applications in the future. 展开更多
关键词 NiCo_2S_4@MnS core–shell structure FLEXIBLE All-solid-state supercapacitor High energy and power densities
下载PDF
The creep behavior of Mg-9Al-1Si-1SiC composite at elevated temperature 被引量:3
13
作者 Pengwen Zhou Shaoxiong Zhang +6 位作者 Ming Li hongxia wang Weili Cheng Lifei wang Hang Li Wei Liang Yiming Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第3期944-951,共8页
The creep properties of as-cast Mg-9Al-1Si alloy and Mg-9Al-1Si-1SiC composite were compared.The results show that Mg-9A1-lSi-lSiC composite performs a better creep resistance than that of Mg-9Al-1Si alloy at constant... The creep properties of as-cast Mg-9Al-1Si alloy and Mg-9Al-1Si-1SiC composite were compared.The results show that Mg-9A1-lSi-lSiC composite performs a better creep resistance than that of Mg-9Al-1Si alloy at constant temperature and stress(473 K,70MPa).Besides,the creep behavior of Mg-9Al-1 Si-1SiC composite at various temperature from 448 K to 498 K and under stresses of 70-90 MPa were systematically investigated.The Mg-9Al-1 Si-1SiC composite exhibited a stress exponent from 5.5 to 6.9 and the creep activation energy fell within the range of 86-111 kJ/mol.The results showed that the creep mechanism of Mg-9Al-1Si-1SiC composite was mainly attributed to the effects of secondary phase strengthening mechanism and dislocation climb mechanism. 展开更多
关键词 MICROSTRUCTURE Stress exponent n Creep activation energy Q Mg-9Al-1Si-1SiC composite
下载PDF
Flexible quasi-solid-state dual-ion asymmetric supercapacitor based on Ni(OH)2 and Nb2O5 nanosheet arrays 被引量:2
14
作者 Xiaolan Deng Yuqi Jiang +6 位作者 Zengxi Wei Minglei Mao Ramyakrishna Pothu hongxia wang Caiyun wang Jinping Liu Jianmin Ma 《Green Energy & Environment》 SCIE CSCD 2019年第4期382-390,共9页
Increasing the energy density, power density as well as widening the operation voltage are essential to electrochemical capacitors to meet the practical energy demands. Herein, a novel flexible quasi-solid-state dual-... Increasing the energy density, power density as well as widening the operation voltage are essential to electrochemical capacitors to meet the practical energy demands. Herein, a novel flexible quasi-solid-state dual-ion asymmetric supercapacitor(ASC) with Ni(OH)2 and Nb2O5 nanosheets directly grown on stainless steel mesh is developed. In the dual-ion ASC, Nb2O5 negative and Ni(OH)2 positive electrodes react with Li+ and OH- respectively in alkaline gel electrolyte to store energy, which is quite different from conventional alkali metal ion SCs and alkaline SCs. The as-assembled flexible device has an extended working voltage of 1.7 V and delivers a capacity of 5.37 mAh cm-2, a maximum energy density and power density of 0.52 mWh cm-3 and 170 mW cm-3 , respectively. The device maintains around 60% capacity retention after long cycling up to 1000 cycles. Moreover, our device can light up a LED light efficiently upon fast charging. The proposed quasi-solid-state dual-ion ASC has potential applications in future portable electronics and flexible energy storage devices. 展开更多
关键词 Nickel hydroxide Niobium pentoxide NANOARRAYS FLEXIBLE supercapacitor DUAL ION capacitor
下载PDF
Surface Treatment of Inorganic CsPbI_(3) Nanocrystals with Guanidinium Iodide for Efficient Perovskite Light-Emitting Diodes with High Brightness 被引量:2
15
作者 Minh Tam Hoang Amandeep Singh Pannu +5 位作者 Yang Yang Sepideh Madani Paul Shaw Prashant Sonar Tuquabo Tesfamichael hongxia wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第4期277-288,共12页
The remarkable evolution of metal halide perovskites in the past decade makes them promise for next-generation optoelectronic material.In particular,nanocrystals(NCs)of inorganic perovskites have demonstrated excellen... The remarkable evolution of metal halide perovskites in the past decade makes them promise for next-generation optoelectronic material.In particular,nanocrystals(NCs)of inorganic perovskites have demonstrated excellent performance for light-emitting and display applications.However,the presence of surface defects on the NCs negatively impacts their performance in devices.Herein,we report a compatible facial post-treatment of CsPbI_(3) nanocrystals using guanidinium iodide(GuI).It is found that the GuI treatment effectively passivated the halide vacancy defects on the surface of the NCs while offering effective surface protection and exciton confinement thanks to the beneficial contribution of iodide and guanidinium cation.As a consequence,the film of treated CsPbI_(3) nanocrystals exhibited significantly enhanced luminescence and charge transport properties,leading to high-performance light-emitting diode with maximum external quantum efficiency of 13.8%with high brightness(peak luminance of 7039 cd m^(−2) and a peak current density of 10.8 cd A^(−1)).The EQE is over threefold higher than performance of untreated device(EQE:3.8%).The operational half-lifetime of the treated devices also was significantly improved with T50 of 20 min(at current density of 25 mA cm^(−2)),outperforming the untreated devices(T50~6 min). 展开更多
关键词 CsPbI_(3)perovskites NANOCRYSTALS Light-emitting diodes PHOTOLUMINESCENCE Surface passivation Guanidinium iodide
下载PDF
The cancer-testis gene,MEIOB,sensitizes triple-negative breast cancer to PARP1 inhibitors by inducing homologous recombination deficiency 被引量:2
16
作者 Yayun Gu Cheng wang +10 位作者 Rongxuan Zhu Jianshui Yang Wenwen Yuan Yanhui Zhu Yan Zhou Na Qin Hongbing Shen hongxia Ma hongxia wang Xiaoan Liu Zhibin Hu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2021年第1期74-87,共14页
Objective:The newly defined cancer-testis(CT)gene,MEIOB,was previously found to play key roles in DNA double-strand break(DSB)repair.In this study,we aimed to investigate the effects and mechanisms of MEIOB in the car... Objective:The newly defined cancer-testis(CT)gene,MEIOB,was previously found to play key roles in DNA double-strand break(DSB)repair.In this study,we aimed to investigate the effects and mechanisms of MEIOB in the carcinogenesis of triple-negative breast cancers(TNBCs).Methods:The Cancer Genome Atlas database was used to quantify the expression of MEIOB.Cox regression analysis was used to evaluate the association between MEIOB expression and the prognosis of human TNBC.The effects of MEIOB on cell proliferation and migration in TNBCs were also assessed in vitro.Patient-derived xenograft(PDX)models were used to assess the sensitivity of breast cancers with active MEIOB to PARP1 inhibitors.Results:We confirmed MEIOB as a CT gene whose expression was restricted to the testes and breast tumors,especially TNBCs.Its activation was significantly associated with poor survival in breast cancer patients[overall,hazard ratio(HR)=1.90(1.16–2.06);TNBCs:HR=7.05(1.16–41.80)].In addition,we found that MEIOB was oncogenic and significantly promoted the proliferation of TNBC cells.Further analysis showed that MEIOB participated in DSB repair in TNBCs.However,in contrast to its function in meiosis,it mediated homologous recombination deficiency(HRD)through the activation of poly ADP-ribose polymerase(PARP)1 by interacting with YBX1.Furthermore,activated MEIOB was shown to confer sensitivity to PARP inhibitors,which was confirmed in PDX models.Conclusions:MEIOB played an oncogenic role in TNBC through its involvement in HRD.In addition,dysregulation of MEIOB sensitized TNBC cells to PARP inhibitors,so MEIOB may be a therapeutic target of PARP1 inhibitors in TNBC. 展开更多
关键词 Cancer-testis gene MEIOB triple-negative breast cancer PARP1 inhibitor cell proliferation
下载PDF
Nanodiamonds for energy 被引量:8
17
作者 hongxia wang Yi Cui 《Carbon Energy》 CAS 2019年第1期13-18,共6页
Carbon materials have been playing important roles in advancing energyrelated technologies and offering great promise to addressing the rising global energy demands and environmental issues.Nanodiamonds,an exciting cl... Carbon materials have been playing important roles in advancing energyrelated technologies and offering great promise to addressing the rising global energy demands and environmental issues.Nanodiamonds,an exciting class of carbon materials,with excellent mechanical,chemical,electronic,and optical properties,have great potentials in energy-related applications.In this contribution,we summarized some of the recent progress on nanodiamonds for energy storage,conversion,and other related applications in sustainable energy research.We discussed the promising opportunities and outlooks for nanodiamonds in energy-related fields. 展开更多
关键词 ENERGY energy conversion energy storage NANODIAMOND
下载PDF
Improving the performance of arylamine-based hole transporting materials in perovskite solar cells: Extending π-conjugation length or increasing the number of side groups? 被引量:2
18
作者 Xuepeng Liu Fantai Kong +7 位作者 wangchao Chen Ting Yu Yin Huang Tasawar Hayat Ahmed Alsaedi hongxia wang Jian Chen Songyuan Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1409-1414,共6页
In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups c... In this work, we prepared three simple arylamine-based hole transporting materials from commercially available starting materials. The effect of extending z-conjugation length or increasing the number of side groups compared with reference compound on the photophysical, electrochemical, hole mobility properties and performance in perovskite solar cells were further studied. It is noted that these two kinds of molecular modifications can significantly lower the HOMO level and improve the hole mobility, thus improving the hole injection from valence band of perovskite. On the other hand, the compound with more side groups showed higher hole injection efficiency due to lower HOMO level and higher hole mo- bility compared with the compound with extending π-conjugation length. The perovskite solar cells with the modified molecules as hole transporting materials showed a higher efficiency of 15.40% and 16.95%, respectively, which is better than that of the reference compound (13.18%). Moreover, the compound with increasing number of side groups based devices showed comparable photovoltaic performance with that of conventional spiro-OMeTAD (16.87%). 展开更多
关键词 Hole transporting materials PEROVSKITE π-conjugation length Side groups
下载PDF
In-situ growth of nanowire WO_(2.72) on carbon cloth as a binder-free electrode for flexible asymmetric supercapacitors with high performance 被引量:1
19
作者 Xiao Huang Zhiguo Zhang +2 位作者 Huan Li hongxia wang Tingli Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第2期58-64,共7页
For the first time,WO_(2.72) nanowires were in-situ grown on carbon cloth by a simple solvothermal reaction.The nanowire WO_(2.72)/carbon cloth(NW WO_(2.72)/CC) electrode showed good electrochemical performance with s... For the first time,WO_(2.72) nanowires were in-situ grown on carbon cloth by a simple solvothermal reaction.The nanowire WO_(2.72)/carbon cloth(NW WO_(2.72)/CC) electrode showed good electrochemical performance with specific capacitance(C_s) reaching up to 398 F g^(-1) at a current density of 2 A g^(-1).The capacitance of 240 F g^(-1) was retained at a high current density of 16 A g^(-1).To further evaluate the energy storage performance,flexible asymmetric supercapacitors(FASC_s) were fabricated using the activated carbon/carbon cloth(AC/CC) as negative electrode and NW WO_(2.72)/CC as positive electrode,respectively.The FASC_s delivered a high energy density of 28 Wh kg^(-1) at a power density of 745 W kg^(-1) and 13 Wh kg^(-1) even at a high power density of 22.5 k W kg^(-1).More impressively,81% of the specific capacitance of the FASC_s was retained after 10,000 cycles,indicating excellent cycle stability.This work indicates the NW WO_(2.72)/CC holds a great potential for application in energy storage devices. 展开更多
关键词 SOLVOTHERMAL reaction Asymmetric SUPERCAPACITORS High energy density FLEXIBILITY
下载PDF
Microbial community changes in the digestive tract of the clam Meretrix petechialis in response to Vibrio parahaemolyticus challenge 被引量:1
20
作者 hongxia wang Xin YUE +4 位作者 Jiajia YU Rui wang Shuangshuang TENG Jun FANG Baozhong LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第1期329-339,共11页
Disease in clams frequently occurred over the last decade and has become a serious threat to the clam aquaculture industry and natural stocks.Mass clam mortality events were reported to be associated with the presence... Disease in clams frequently occurred over the last decade and has become a serious threat to the clam aquaculture industry and natural stocks.Mass clam mortality events were reported to be associated with the presence of opportunistic pathogen vibrio.However,the complexity of infection that occurs in the natural environment remains poorly understood.In this study,we smulated a natural disease outbreak by vibrio immersion infection to study the diversity and dynamics of microbiota in the digestive tract of clam Meretrix petechialis during the infection process.Dramatic changes in operational taxonomic unit richness and phylum composition of the bacterial communities were observed during pathogen invasion.In addition,we investigated the potential relationship between microbiota dynamics and host status during disease progression.Results reveal that,at the end stage of vibrio infection,interindividual variation in the digestive tract microbiota increased,as did the diff erence in individual health status.The moribund clams displayed signs of microbial community shifts to low diversity,and the microbial community was characterized by mass proliferation of a few operational taxonomic units. 展开更多
关键词 Meretrix petechialis vibrio challenge 16S ribosomal RNA bacterial community digestive tract
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部