In early 2020,the COVID-19 outbreak complicated the diagnosis,treatm ent and rehabilitation of patients with substance use disorders and increased the risks of substance abuse and addictive behaviours,such as online g...In early 2020,the COVID-19 outbreak complicated the diagnosis,treatm ent and rehabilitation of patients with substance use disorders and increased the risks of substance abuse and addictive behaviours,such as online gaming disorders,in the general public.Substance use disorder is a chronic recurrent brain disease characterised by strong cravings,high recurrence rates,and a high proportion of comorbidity of mental and physical disorders.1 Therefore,regular long-term therapeutic interventions are critical to preventing dm g relapses while maintaining withdrawal.展开更多
Chronic low back pain and dyskinesia caused by intervertebral disc degeneration(IDD)are seriously aggravated and become more prevalent with age.Current clinical treatments do not restore the biological structure and i...Chronic low back pain and dyskinesia caused by intervertebral disc degeneration(IDD)are seriously aggravated and become more prevalent with age.Current clinical treatments do not restore the biological structure and inherent function of the disc.The emergence of tissue engineering and regenerative medicine has provided new insights into the treatment of IDD.We synthesized biocompatible layered double hydroxide(LDH)nanoparticles and optimized their ion elemental compositions to promote chondrogenic differentiation of human umbilical cord mesenchymal stem cells(hUC-MSCs).The chondrogenic differentiation of LDH-treated MSCs was validated using Alcian blue staining,qPCR,and immunofluorescence analyses.LDH-pretreated hUC-MSCs were differentiated prior to transplantation into the degenerative site of a needle puncture IDD rat model.Repair and regeneration evaluated using X-ray,magnetic resonance imaging,and tissue immunostaining 4-12 weeks after transplantation showed recovery of the disc space height and integrated tissue structure.Transcriptome sequencing revealed significant regulatory roles of the extracellular matrix(ECM)and integrin receptors of focal adhesion signaling pathway in enhancing chondrogenic differentiation and thus prompting tissue regeneration.The construction of ion-specific LDH nanomaterials for in situ intervertebral disc regeneration through the focal adhesion signaling pathway provides theoretical basis for clinical transformation in IDD treatment.展开更多
Secret key generation from wireless channel is an emerging technology for communication network security,which exploits the reciprocity and time variability of wireless channels to generate symmetrical keys between th...Secret key generation from wireless channel is an emerging technology for communication network security,which exploits the reciprocity and time variability of wireless channels to generate symmetrical keys between the communication parties.Compared to the existing asymmetric key distribution methods,secret key generation from wireless channel has low complexity and high security,making it especially suitable for distributed networks.In vehicular communications,the reciprocity of wireless channel is degraded due to the movement of vehicular.This paper proposes a high consistency wireless key generation scheme for vehicular communication,especially applied to LTE-V2X(LTE vehicle to everything)systems.A channel reciprocity enhancement method is designed based on Wiener filter extrapolation,which can efficiently reduce the mismatch between the channels at the receiver and significantly reduce key disagreement rate.A real experimental system based on vehicle and universal software radio peripheral(USRP)platform is setup to verify the secret key generation in LTE-V2X systems.The effectiveness of the proposed method is verified in simulations and extensive practical tests.展开更多
基金This work was supported by the Program of Shanghai Academic Research Leader(17XD1403300)the Shanghai Key Laboratory of Psychotic Disorders(13DZ2260500)+1 种基金the Shanghai Intelligent Engineering Technology Research Center for Addiction and Rehabilitation(19DZ2255200)and the Shanghai Clinical Research Center for Mental Health(19MC1911100).
文摘In early 2020,the COVID-19 outbreak complicated the diagnosis,treatm ent and rehabilitation of patients with substance use disorders and increased the risks of substance abuse and addictive behaviours,such as online gaming disorders,in the general public.Substance use disorder is a chronic recurrent brain disease characterised by strong cravings,high recurrence rates,and a high proportion of comorbidity of mental and physical disorders.1 Therefore,regular long-term therapeutic interventions are critical to preventing dm g relapses while maintaining withdrawal.
基金This work was financially supported by the INTERNATIONAL COOPERATION Project of National Natural Science Foundation of China(Grant No.81810001048)the National Natural Science Foundation of China(Grant Nos.81922039,81873994,31727801,82225027 and 82001308)Key Basic Research Projects of Shanghai Science and Technology Commission(Grant No.19JC141470)。
文摘Chronic low back pain and dyskinesia caused by intervertebral disc degeneration(IDD)are seriously aggravated and become more prevalent with age.Current clinical treatments do not restore the biological structure and inherent function of the disc.The emergence of tissue engineering and regenerative medicine has provided new insights into the treatment of IDD.We synthesized biocompatible layered double hydroxide(LDH)nanoparticles and optimized their ion elemental compositions to promote chondrogenic differentiation of human umbilical cord mesenchymal stem cells(hUC-MSCs).The chondrogenic differentiation of LDH-treated MSCs was validated using Alcian blue staining,qPCR,and immunofluorescence analyses.LDH-pretreated hUC-MSCs were differentiated prior to transplantation into the degenerative site of a needle puncture IDD rat model.Repair and regeneration evaluated using X-ray,magnetic resonance imaging,and tissue immunostaining 4-12 weeks after transplantation showed recovery of the disc space height and integrated tissue structure.Transcriptome sequencing revealed significant regulatory roles of the extracellular matrix(ECM)and integrin receptors of focal adhesion signaling pathway in enhancing chondrogenic differentiation and thus prompting tissue regeneration.The construction of ion-specific LDH nanomaterials for in situ intervertebral disc regeneration through the focal adhesion signaling pathway provides theoretical basis for clinical transformation in IDD treatment.
基金supported in part by the National Natural Science Foundation of China under Grant 62171120,and 62001106National Key Research and Development Program of China(2020YFE0200600)+3 种基金Jiangsu Natural Science Foundation under Grant BK20200350Jiangsu Provincial Key Laboratory of Network and Information Security No.BM2003201Guangdong Key Research and Development Program under Grant 2020B0303010001Purple Mountain Laboratories for Network and Communication Security.
文摘Secret key generation from wireless channel is an emerging technology for communication network security,which exploits the reciprocity and time variability of wireless channels to generate symmetrical keys between the communication parties.Compared to the existing asymmetric key distribution methods,secret key generation from wireless channel has low complexity and high security,making it especially suitable for distributed networks.In vehicular communications,the reciprocity of wireless channel is degraded due to the movement of vehicular.This paper proposes a high consistency wireless key generation scheme for vehicular communication,especially applied to LTE-V2X(LTE vehicle to everything)systems.A channel reciprocity enhancement method is designed based on Wiener filter extrapolation,which can efficiently reduce the mismatch between the channels at the receiver and significantly reduce key disagreement rate.A real experimental system based on vehicle and universal software radio peripheral(USRP)platform is setup to verify the secret key generation in LTE-V2X systems.The effectiveness of the proposed method is verified in simulations and extensive practical tests.