A meshless local radial point interpolation method (LRPIM) for solving elastic dy-namic problems of moderately thick plates is presented in this paper. The discretized system equation of the plate is obtained using ...A meshless local radial point interpolation method (LRPIM) for solving elastic dy-namic problems of moderately thick plates is presented in this paper. The discretized system equation of the plate is obtained using a locally weighted residual method. It uses a radial basis function (RBF) coupled with a polynomial basis function as a trial function,and uses the quartic spline function as a test function of the weighted residual method. The shape function has the properties of the Kronecker delta function,and no additional treatment is done to impose essen-tial boundary conditions. The Newmark method for solving the dynamic problem is adopted in computation. Effects of sizes of the quadrature sub-domain and influence domain on the dynamic properties are investigated. The numerical results show that the presented method can give quite accurate results for the elastic dynamic problem of the moderately thick plate.展开更多
基金supported by the National 973 Scientific and Technological Innovation Project (No. 2004CB719402)National Natural Science Foundation of China (No. 10672055)+3 种基金Key Project of NSFC (No. 60635020)Natural Science Foundation for Out standing Youth of China (No. 50625519)Hunan Provincial Natural Science Foundation of China (No. 07JJ6002)Scientific Research Fund of Hunan Provincial Education Department of China (No. 08C230)
文摘A meshless local radial point interpolation method (LRPIM) for solving elastic dy-namic problems of moderately thick plates is presented in this paper. The discretized system equation of the plate is obtained using a locally weighted residual method. It uses a radial basis function (RBF) coupled with a polynomial basis function as a trial function,and uses the quartic spline function as a test function of the weighted residual method. The shape function has the properties of the Kronecker delta function,and no additional treatment is done to impose essen-tial boundary conditions. The Newmark method for solving the dynamic problem is adopted in computation. Effects of sizes of the quadrature sub-domain and influence domain on the dynamic properties are investigated. The numerical results show that the presented method can give quite accurate results for the elastic dynamic problem of the moderately thick plate.