An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear ar...An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear aromatic resin of moderate condensation degree(B-COPNA)is a widely used carbon material due to its superb processability,the production of which is,however,seriously limited by the high cost of raw materials.Under such context,an interesting strategy was proposed in this study for producing B-COPNA resin using crosslinked light fractions of ethylene tar(ETLF,boiling point<260℃)facilitated by molecular simulation.1,4-Benzenedimethanol(PXG)was first selected as the crosslinking agent according to the findings of molecular simulation.The effects of operating conditions,including reactions temperature,crosslinking agent,and catalyst content on the softening point and yield of B-COPNA resin products were then investigated to optimize the process.The reaction mechanism of resin production was studied by analyzing the molecular structure and transition state of ETLF and crosslinking agents.It was shown that PXG exhibited a superior capacity of withdrawing electrons and a higher electrophilic reactivity than other crosslinking agents.In addition to the highest yield and greatest heat properties,PXG-prepared resin contained the most condensed aromatics.The corresponding optimized conditions of resin preparation were 180℃,1:1.9(PXG:ETLF),and 3%(mass)of catalyst content with a resin yield of 78.57%.It was the electrophilic substitution reaction that occurred between the ETLF and crosslinking agent molecules that were responsible for the resin formation,according to the experimental characterization and molecular simulation.Hence,it was confirmed that the proposed strategy and demonstrated process can achieve a clean and high value-added utilization of ETLF via B-COPNA resin preparation,bringing huge economic value to the current petrochemical industry.展开更多
Translesion DNA synthesis(TLS)can bypass DNA lesions caused by chemotherapeutic drugs,which usually result in drug resistance.Given its key role in mutagenesis and cell survival after DNA damage,inhibition of the TLS ...Translesion DNA synthesis(TLS)can bypass DNA lesions caused by chemotherapeutic drugs,which usually result in drug resistance.Given its key role in mutagenesis and cell survival after DNA damage,inhibition of the TLS pathway has emerged as a potential target for improving the efficacy of DNA-damaging agents such as cisplatin(CDDP),a widely used anticancer agent.Unfortunately,few suitable natural TLS inhibitors have been reported.Here,we found that a triterpenoid compound Ganoboninketal C(26-3)from Ganoderma boninense,a traditional Chinese medicine,can impair CDDP-induced TLS polymerase eta(Polη)focus formation,PCNA monoubiquitination as well as mutagenesis.Moreover,26-3 can significantly sensitize tumor cells to CDDP killing and reduce the proportion of cancer stem cells in AGS and promote apoptosis after CDDP exposure.Interestingly,26-3 can also sensitize tumor cells to Gefitinib therapy.Mechanistically,through RNA-seq analysis,we found that 26-3 could abrogate the CDDP-induced upregulation of Polηand PIDD(p53-induced protein with a death domain),2 known factors promoting TLS pathway.Furthermore,we found that activating transcription factor 3 is a potential novel TLS modulator.Taken together,we have identified a natural TLS inhibitor 26-3,which can be potentially used as an adjuvant to improve clinical efficacy.展开更多
In this study,an optimization method is proposed to enhance the gas–liquid mass transfer in bubble column reactor based on the entropy generation extremum principle.The mass transfer–induced entropy generation can b...In this study,an optimization method is proposed to enhance the gas–liquid mass transfer in bubble column reactor based on the entropy generation extremum principle.The mass transfer–induced entropy generation can be maximized with the increase of mass transfer rate,based on which the velocity field can be optimized.The oxygen gas–liquid mass transfer is the major rate–limiting step of the toluene emissions biodegradation process in bubble column reactor,so the entropy generation due to oxygen mass transfer is used as the objective function,and the conservation equations of the gas–liquid flow and species concentration are taken as constraints.This optimization problem is solved by the calculus of variations,the optimal liquid flow pattern is obtained and the relationship of the maximum mass transfer enhancement on viscous dissipation is revealed,which can be used to improve the design of internal structure of the bubble column reactor.展开更多
Hydrophobic magnesium hydroxide(MH) nanoparticles were prepared by a one-step synthesis method in a high-gravity environment generated by a novel impinging stream–rotating packed bed(IS-RPB) reactor. The reactant sol...Hydrophobic magnesium hydroxide(MH) nanoparticles were prepared by a one-step synthesis method in a high-gravity environment generated by a novel impinging stream–rotating packed bed(IS-RPB) reactor. The reactant solutions were simultaneously and continuously pumped into the IS-RPB reactor, and then Tween80 was added as a surface modifier. The morphology, structure, and properties of blank and hydrophobic MH were characterized. The effects of MH nanoparticles on the flame retardancy, thermal stability, and mechanical properties of PP/MH composites were also studied. We found that the obtained MH nanoparticles exhibited hexagonal lamella with a mean size of 30 nm, excellent hydrophobic properties(e.g., high water contact angle of 112°), and improved thermal stability of MH. The limiting oxygen index(LOI) further showed that increased MH loading can significantly improve flame-retardant performance, which reached 29.3% for PP/MH composites with 30 wt% hydrophobic samples. The thermal stability and mechanical properties of the PP/MH composites with hydrophobic samples were also much higher than those of PP/MH composites with blank MH. Results showed that the one-step synthesis had high potential application in the large-scale production of hydrophobic MH nanoparticles.展开更多
Hydrophobic Mg(OH)_2nanoparticles were successfully synthesized via an in situ surface modification method in a novel impinging stream-rotating packed bed(IS-RPB) reactor using oleic acid(C_(17)H_(33)COOH, OA) as a su...Hydrophobic Mg(OH)_2nanoparticles were successfully synthesized via an in situ surface modification method in a novel impinging stream-rotating packed bed(IS-RPB) reactor using oleic acid(C_(17)H_(33)COOH, OA) as a surface modifier, magnesium chloride hexahydrate in the presence of ethanol as a precursor, and sodium hydroxide as a precipitant. The products were characterized by Fourier transform infrared spectroscopy(FTIR), Field emission scanning electron microscopy(FESEM), X-ray diffraction(XRD), and thermogravimetry-differential scanning calorimetry(TG-DSC). Compatibility with organic solutions was determined by sedimentation tests. The prepared nanoparticles exhibited regular hexagonal lamella with an average diameter of 30 nm when OA is added to the reaction system; this result indicates that OA regulates the morphology of the Mg(OH)_2nanoparticles.XRD revealed that the high-purity Mg(OH)_2product presents a brucite structure, and the I_(001)/I_(101) of hydrophobic Mg(OH)_2(0.86) was higher than that of the blank Mg(OH)_2(0.63). FTIR analysis showed that OA bonded to the surface of the Mg(OH)_2. Compared with the blank Mg(OH)_2product, the product obtained through the proposed method possesses excellent hydrophobic properties, including a high water contact angle of 101.4° and good compatibility with liquid paraffin. TG-DSC analysis indicated that the total percentage of mass loss of hydrophobic Mg(OH)_2(40.88%) was higher than that of the blank Mg(OH)_2product(33.18%). The in situ surface modification method proposed in this work presents potential use in the large-scale production of Mg(OH)_2nanoparticles.展开更多
AbstFeS has an excellent performance in removing heavy metal chromium(Ⅵ)in wastewater due to its good adsorption and reduction.The properties of easy aggregation and oxidization of nano-FeS,however,limit the applicat...AbstFeS has an excellent performance in removing heavy metal chromium(Ⅵ)in wastewater due to its good adsorption and reduction.The properties of easy aggregation and oxidization of nano-FeS,however,limit the applications of FeS in engineering.In this study,one FeS adsorbent supported by Al_(2)O_(3) was prepared using high-gravity technology in IS-RPB(Impinging Stream Rotating Packed Bed)to overcome polymerization and oxidation of nano-FeS.Experimental results showed that FeS was uniformly loaded on the surface and pores of Al_(2)O_(3).The specific surface area of FeS/Al_(2)O_(3) is 125 m2·g^(-1) which is nearly 1.6 times that of pure FeS.The adsorption capacity of FeS/Al_(2)O_(3) for chromium(Ⅵ)is 200 mg·g^(-1),1.4 times that of pure FeS.pH value and ionic strength are strongly correlated with the chromium removal performance of FeS/Al_(2)O_(3).Over 98%of chromium can be removed when pH values of FeS/Al_(2)O_(3) ranged from 4 to 6.Higher adsorption capacity is achieved with higher ionic strength in FeS/Al_(2)O_(3).The FeS/Al_(2)O_(3) maintained more than 95%of the adsorption capacity after being preserved for one month,but only 70%for pure FeS.The removal processes of chromium(Ⅵ)conformes to a pseudo-second-order kinetic model(R2≥0.9986),indicating that the rate-limiting step is a chemical sorption process instead of a mass transfer.展开更多
Due to its high efficiency, high precision and high flexibility, CNC lathe is widely used in the machinery manufacturing industry increasingly, and becomes one of CNC machine too[s that most widely used. However, to g...Due to its high efficiency, high precision and high flexibility, CNC lathe is widely used in the machinery manufacturing industry increasingly, and becomes one of CNC machine too[s that most widely used. However, to give full play to the role of CNC lathes, the key is programme, that is, preparing the reasonable and efficient processing procedures depending on the features and precision parts. This paper discussed the problems of programming and processing techniques of the CNC lathe parts.展开更多
In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is si...In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is simulated by the Euler-Euler model,the hydrodynamics of the reactor is predicted by the RNG k-εmethod,and the high-gravity environment is simulated by the sliding mesh model.The turbulent mass transfer process is characterized by the concentration variance c^(2) and its dissipation rateεc formulations,and therefore the turbulent mass diffusivity can be directly obtained.The simulated segregation index Xs is in agreement with our previous experimental results.The simulated results reveal that the fringe effect of IS can be offset by the end effect at the inner radius of RPB,so the investigation of the coupling mechanism between IS and RPB is critical to intensify the mixing process in IS-RPB.展开更多
Mitochondrial dysfunction is associated with the emergence of several neurological and cardiovascular diseases. Hence, mitochondria-targeting delivery strategies are highly significant and critically needed. In this s...Mitochondrial dysfunction is associated with the emergence of several neurological and cardiovascular diseases. Hence, mitochondria-targeting delivery strategies are highly significant and critically needed. In this study, we developed a small library of peptides simulating the mitochondria-targeting peptide SS-31, a promising tetra-peptide with antioxidant character, and subsequently evaluated the toxicity, antioxidant ability and mitochondrial delivery of nanoparticles. Among the designed peptides, RF-2 (DArg-Dmt-Arg-Phe-NH2) showed controlled toxicity and excellent protection against gentamicin-induced hair cell damage, as compared with SS-31. More importantly, RF-2-modified PLGA nanoparticles demonstrated high colocalization with mitochondria and comparable specific subcellular accumulation, when compared with SS-31. Taken together, the obtained results supported RF-2 as a mitochondriatargeting peptide with high potential as a targeted carrier.展开更多
This study was conducted to evaluate the toxicological response ofp-nitrotoluene and p-nitroaniline to the key fish species, Cyprinus carpio. A freshwater fish bioassay based on the 96 h LC50 was used to estimate the ...This study was conducted to evaluate the toxicological response ofp-nitrotoluene and p-nitroaniline to the key fish species, Cyprinus carpio. A freshwater fish bioassay based on the 96 h LC50 was used to estimate the single and joint toxicity of the two chemicals. The toxicity of p-nitrotoluene was greater than that of pnitroaniline based on 96 h LCso values of 40.74 mg.L^-1 and 48.99mg.L^-1, respectively. Both compounds had moderate toxicity toward Cyprinus carpio, and this toxicity increased with the exposure duration and con- centration. Binary mixtures of the compounds were more toxic than the individual compounds at 96 h, and they acted upon partial addition. When the exposure time was longer, the toxicity increased for mixtures of compounds with the same concentration or toxicity. The results of this study suggest that exposure to a combination of these chemicals would result in a higher environmental risk in aquatic systems than exposure to either compound alone. Further research is needed to investigate the combined effects and sublethal toxicity of p-nitrotoluene and p- nitroaniline, since they are both still used in China.展开更多
Calcination temperature plays a crucial role in determining the surface properties of generated MgO, but the influence of temperature variation in a muffle furnace during calcination on its performance is rarely repor...Calcination temperature plays a crucial role in determining the surface properties of generated MgO, but the influence of temperature variation in a muffle furnace during calcination on its performance is rarely reported. Herein we observed that the temperature in a muffle furnace during calcination demonstrated a gradually increasing trend as the location changed from the furnace doorway to the most inner position. The variation in temperature had a great impact on the adsorption performance of generated rod-like MgO without and/or with involvement of Na2SiO3 to Congo red in aqueous solution. To get a better understanding on the detailed reasons, various techniques including actual temperature measurement via multimeter, N2 physical adsorption, CO2 chemical adsorption and FT-IR spectrometry have been employed to probe the correlation between the adsorption performance of generated MgO from various locations and the inner actual temperature of used muffle furnace as well as their physicochemical properties. In addition, two mechanisms were proposed to elucidate the adsorption process of Congo red over the surface of generated MgO without and/or with presence of Na2SiO3, respectively.展开更多
The ongoing collision and continuous compression between the Indian and Eurasian plates began 55 Ma ago[1-3];this process created the magnificent Tibetan Plateau,the highest-elevation landform on the Earth today.Studi...The ongoing collision and continuous compression between the Indian and Eurasian plates began 55 Ma ago[1-3];this process created the magnificent Tibetan Plateau,the highest-elevation landform on the Earth today.Studies have shown that a continent-continent collision occurred not only south of the Tibetan Plateau but also north of the plateau[4].展开更多
基金support of National Natural Science Foundation of P.R.China(22308104).
文摘An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear aromatic resin of moderate condensation degree(B-COPNA)is a widely used carbon material due to its superb processability,the production of which is,however,seriously limited by the high cost of raw materials.Under such context,an interesting strategy was proposed in this study for producing B-COPNA resin using crosslinked light fractions of ethylene tar(ETLF,boiling point<260℃)facilitated by molecular simulation.1,4-Benzenedimethanol(PXG)was first selected as the crosslinking agent according to the findings of molecular simulation.The effects of operating conditions,including reactions temperature,crosslinking agent,and catalyst content on the softening point and yield of B-COPNA resin products were then investigated to optimize the process.The reaction mechanism of resin production was studied by analyzing the molecular structure and transition state of ETLF and crosslinking agents.It was shown that PXG exhibited a superior capacity of withdrawing electrons and a higher electrophilic reactivity than other crosslinking agents.In addition to the highest yield and greatest heat properties,PXG-prepared resin contained the most condensed aromatics.The corresponding optimized conditions of resin preparation were 180℃,1:1.9(PXG:ETLF),and 3%(mass)of catalyst content with a resin yield of 78.57%.It was the electrophilic substitution reaction that occurred between the ETLF and crosslinking agent molecules that were responsible for the resin formation,according to the experimental characterization and molecular simulation.Hence,it was confirmed that the proposed strategy and demonstrated process can achieve a clean and high value-added utilization of ETLF via B-COPNA resin preparation,bringing huge economic value to the current petrochemical industry.
基金supported by National Key Research and Development Program of China(2018YFA0108500)NSFC82341006,81673334,31970740,31801144,31800684 and 31701227+3 种基金Natural Science Foundation of Beijing(IS23071)Postdoctoral Research Foundation of China(2021M703206)Natural Science Foundation of Shanxi Province(202203021211155)the State Key Laboratory of Membrane Biology.
文摘Translesion DNA synthesis(TLS)can bypass DNA lesions caused by chemotherapeutic drugs,which usually result in drug resistance.Given its key role in mutagenesis and cell survival after DNA damage,inhibition of the TLS pathway has emerged as a potential target for improving the efficacy of DNA-damaging agents such as cisplatin(CDDP),a widely used anticancer agent.Unfortunately,few suitable natural TLS inhibitors have been reported.Here,we found that a triterpenoid compound Ganoboninketal C(26-3)from Ganoderma boninense,a traditional Chinese medicine,can impair CDDP-induced TLS polymerase eta(Polη)focus formation,PCNA monoubiquitination as well as mutagenesis.Moreover,26-3 can significantly sensitize tumor cells to CDDP killing and reduce the proportion of cancer stem cells in AGS and promote apoptosis after CDDP exposure.Interestingly,26-3 can also sensitize tumor cells to Gefitinib therapy.Mechanistically,through RNA-seq analysis,we found that 26-3 could abrogate the CDDP-induced upregulation of Polηand PIDD(p53-induced protein with a death domain),2 known factors promoting TLS pathway.Furthermore,we found that activating transcription factor 3 is a potential novel TLS modulator.Taken together,we have identified a natural TLS inhibitor 26-3,which can be potentially used as an adjuvant to improve clinical efficacy.
基金supported by the National Natural Science Foundation of China(91834303 and 22108261)the Open Foundation of State Key Laboratory of Chemical Engineering(SKL-ChE-19B02)+1 种基金Fundamental Research Program of Shanxi Province(20210302124618)Scientific Technological Innovation Programs of Higher Education Institution in Shanxi(2020L0284).
文摘In this study,an optimization method is proposed to enhance the gas–liquid mass transfer in bubble column reactor based on the entropy generation extremum principle.The mass transfer–induced entropy generation can be maximized with the increase of mass transfer rate,based on which the velocity field can be optimized.The oxygen gas–liquid mass transfer is the major rate–limiting step of the toluene emissions biodegradation process in bubble column reactor,so the entropy generation due to oxygen mass transfer is used as the objective function,and the conservation equations of the gas–liquid flow and species concentration are taken as constraints.This optimization problem is solved by the calculus of variations,the optimal liquid flow pattern is obtained and the relationship of the maximum mass transfer enhancement on viscous dissipation is revealed,which can be used to improve the design of internal structure of the bubble column reactor.
基金Supported by the National Natural Science Foundation of China(21376229)the Science and Technology of Shanxi Province(2015031019-5)the Natural Science Foundation for Young Scientists of Shanxi Province(2015021033)
文摘Hydrophobic magnesium hydroxide(MH) nanoparticles were prepared by a one-step synthesis method in a high-gravity environment generated by a novel impinging stream–rotating packed bed(IS-RPB) reactor. The reactant solutions were simultaneously and continuously pumped into the IS-RPB reactor, and then Tween80 was added as a surface modifier. The morphology, structure, and properties of blank and hydrophobic MH were characterized. The effects of MH nanoparticles on the flame retardancy, thermal stability, and mechanical properties of PP/MH composites were also studied. We found that the obtained MH nanoparticles exhibited hexagonal lamella with a mean size of 30 nm, excellent hydrophobic properties(e.g., high water contact angle of 112°), and improved thermal stability of MH. The limiting oxygen index(LOI) further showed that increased MH loading can significantly improve flame-retardant performance, which reached 29.3% for PP/MH composites with 30 wt% hydrophobic samples. The thermal stability and mechanical properties of the PP/MH composites with hydrophobic samples were also much higher than those of PP/MH composites with blank MH. Results showed that the one-step synthesis had high potential application in the large-scale production of hydrophobic MH nanoparticles.
基金Supported by the National Natural Science Foundation of China(No.21376229)
文摘Hydrophobic Mg(OH)_2nanoparticles were successfully synthesized via an in situ surface modification method in a novel impinging stream-rotating packed bed(IS-RPB) reactor using oleic acid(C_(17)H_(33)COOH, OA) as a surface modifier, magnesium chloride hexahydrate in the presence of ethanol as a precursor, and sodium hydroxide as a precipitant. The products were characterized by Fourier transform infrared spectroscopy(FTIR), Field emission scanning electron microscopy(FESEM), X-ray diffraction(XRD), and thermogravimetry-differential scanning calorimetry(TG-DSC). Compatibility with organic solutions was determined by sedimentation tests. The prepared nanoparticles exhibited regular hexagonal lamella with an average diameter of 30 nm when OA is added to the reaction system; this result indicates that OA regulates the morphology of the Mg(OH)_2nanoparticles.XRD revealed that the high-purity Mg(OH)_2product presents a brucite structure, and the I_(001)/I_(101) of hydrophobic Mg(OH)_2(0.86) was higher than that of the blank Mg(OH)_2(0.63). FTIR analysis showed that OA bonded to the surface of the Mg(OH)_2. Compared with the blank Mg(OH)_2product, the product obtained through the proposed method possesses excellent hydrophobic properties, including a high water contact angle of 101.4° and good compatibility with liquid paraffin. TG-DSC analysis indicated that the total percentage of mass loss of hydrophobic Mg(OH)_2(40.88%) was higher than that of the blank Mg(OH)_2product(33.18%). The in situ surface modification method proposed in this work presents potential use in the large-scale production of Mg(OH)_2nanoparticles.
基金The present research was under the financial support of Shanxi Provincial Natural Fund(201901D111136).
文摘AbstFeS has an excellent performance in removing heavy metal chromium(Ⅵ)in wastewater due to its good adsorption and reduction.The properties of easy aggregation and oxidization of nano-FeS,however,limit the applications of FeS in engineering.In this study,one FeS adsorbent supported by Al_(2)O_(3) was prepared using high-gravity technology in IS-RPB(Impinging Stream Rotating Packed Bed)to overcome polymerization and oxidation of nano-FeS.Experimental results showed that FeS was uniformly loaded on the surface and pores of Al_(2)O_(3).The specific surface area of FeS/Al_(2)O_(3) is 125 m2·g^(-1) which is nearly 1.6 times that of pure FeS.The adsorption capacity of FeS/Al_(2)O_(3) for chromium(Ⅵ)is 200 mg·g^(-1),1.4 times that of pure FeS.pH value and ionic strength are strongly correlated with the chromium removal performance of FeS/Al_(2)O_(3).Over 98%of chromium can be removed when pH values of FeS/Al_(2)O_(3) ranged from 4 to 6.Higher adsorption capacity is achieved with higher ionic strength in FeS/Al_(2)O_(3).The FeS/Al_(2)O_(3) maintained more than 95%of the adsorption capacity after being preserved for one month,but only 70%for pure FeS.The removal processes of chromium(Ⅵ)conformes to a pseudo-second-order kinetic model(R2≥0.9986),indicating that the rate-limiting step is a chemical sorption process instead of a mass transfer.
文摘Due to its high efficiency, high precision and high flexibility, CNC lathe is widely used in the machinery manufacturing industry increasingly, and becomes one of CNC machine too[s that most widely used. However, to give full play to the role of CNC lathes, the key is programme, that is, preparing the reasonable and efficient processing procedures depending on the features and precision parts. This paper discussed the problems of programming and processing techniques of the CNC lathe parts.
基金supported by the National Natural Science Foundation of China (22208328, 22378370 and 22108261)Fundamental Research Program of Shanxi Province(20210302124618)
文摘In this study,the fluid flow and mixing process in an impinging stream-rotating packed bed(IS-RPB)is simulated by using a new three-dimensional computational fluid dynamics model.Specifically,the gaseliquid flow is simulated by the Euler-Euler model,the hydrodynamics of the reactor is predicted by the RNG k-εmethod,and the high-gravity environment is simulated by the sliding mesh model.The turbulent mass transfer process is characterized by the concentration variance c^(2) and its dissipation rateεc formulations,and therefore the turbulent mass diffusivity can be directly obtained.The simulated segregation index Xs is in agreement with our previous experimental results.The simulated results reveal that the fringe effect of IS can be offset by the end effect at the inner radius of RPB,so the investigation of the coupling mechanism between IS and RPB is critical to intensify the mixing process in IS-RPB.
基金financially supported by the National Natural Science Foundation of China (No. 81473162)the Program for Liaoning Excellent Talents in Universitythe Young and Middleaged Career Development Planning of Shenyang Pharmaceutical University
文摘Mitochondrial dysfunction is associated with the emergence of several neurological and cardiovascular diseases. Hence, mitochondria-targeting delivery strategies are highly significant and critically needed. In this study, we developed a small library of peptides simulating the mitochondria-targeting peptide SS-31, a promising tetra-peptide with antioxidant character, and subsequently evaluated the toxicity, antioxidant ability and mitochondrial delivery of nanoparticles. Among the designed peptides, RF-2 (DArg-Dmt-Arg-Phe-NH2) showed controlled toxicity and excellent protection against gentamicin-induced hair cell damage, as compared with SS-31. More importantly, RF-2-modified PLGA nanoparticles demonstrated high colocalization with mitochondria and comparable specific subcellular accumulation, when compared with SS-31. Taken together, the obtained results supported RF-2 as a mitochondriatargeting peptide with high potential as a targeted carrier.
基金This study was co-funded by the National Natural Science Foundation of China (Grant No. 50979006), Projects of Hebei Science and Technology Department (No. 12276708D), Projects of Hebei Education Department (No. ZH2011119), Natural Science Foundation of Hebei Province (No. D2010000867), the Doctor Development Foundation Project in Hebei University of Science and Technology (No. 000446), and the Key Discipline Foundation in Hebei Province.
文摘This study was conducted to evaluate the toxicological response ofp-nitrotoluene and p-nitroaniline to the key fish species, Cyprinus carpio. A freshwater fish bioassay based on the 96 h LC50 was used to estimate the single and joint toxicity of the two chemicals. The toxicity of p-nitrotoluene was greater than that of pnitroaniline based on 96 h LCso values of 40.74 mg.L^-1 and 48.99mg.L^-1, respectively. Both compounds had moderate toxicity toward Cyprinus carpio, and this toxicity increased with the exposure duration and con- centration. Binary mixtures of the compounds were more toxic than the individual compounds at 96 h, and they acted upon partial addition. When the exposure time was longer, the toxicity increased for mixtures of compounds with the same concentration or toxicity. The results of this study suggest that exposure to a combination of these chemicals would result in a higher environmental risk in aquatic systems than exposure to either compound alone. Further research is needed to investigate the combined effects and sublethal toxicity of p-nitrotoluene and p- nitroaniline, since they are both still used in China.
基金The authors would like to acknowledge funding support from the National Natural Science Foundation of China (Grant Nos. 21575112, 21777128 and 21705125) and Shaanxi S&T Research Development Project of China (Grant No. 2016GY-231).
文摘Calcination temperature plays a crucial role in determining the surface properties of generated MgO, but the influence of temperature variation in a muffle furnace during calcination on its performance is rarely reported. Herein we observed that the temperature in a muffle furnace during calcination demonstrated a gradually increasing trend as the location changed from the furnace doorway to the most inner position. The variation in temperature had a great impact on the adsorption performance of generated rod-like MgO without and/or with involvement of Na2SiO3 to Congo red in aqueous solution. To get a better understanding on the detailed reasons, various techniques including actual temperature measurement via multimeter, N2 physical adsorption, CO2 chemical adsorption and FT-IR spectrometry have been employed to probe the correlation between the adsorption performance of generated MgO from various locations and the inner actual temperature of used muffle furnace as well as their physicochemical properties. In addition, two mechanisms were proposed to elucidate the adsorption process of Congo red over the surface of generated MgO without and/or with presence of Na2SiO3, respectively.
基金supported by the National Natural Science Foundation of China(41874123 and 42004110)PetroChina Innovation Foundation(2010D-5006-0303 and 2014D-5006-0303)Shaanxi Provincial Natural Science Basic Research Project(2011JQ5006,2017JZ007 and 2022GY-148)。
文摘The ongoing collision and continuous compression between the Indian and Eurasian plates began 55 Ma ago[1-3];this process created the magnificent Tibetan Plateau,the highest-elevation landform on the Earth today.Studies have shown that a continent-continent collision occurred not only south of the Tibetan Plateau but also north of the plateau[4].