To better understand the mechanism of the strength weakening process of soft rocks in deep mines after interacting with water, a self-developed experimental system, Intelligent Testing System for Water Absorption in D...To better understand the mechanism of the strength weakening process of soft rocks in deep mines after interacting with water, a self-developed experimental system, Intelligent Testing System for Water Absorption in Deep Soft Rocks (ITSWADSR), is employed to analyze the hydrophilic behavior of deep calcareous shale sampled from Daqiang coal mine. Experimental results demonstrate that the relation between water absorption and time can be expressed by power functions, and the soakage rate decreases while the soakage increases with time. In order to quantitatively calculate the weight coefficients of the influential factors for water absorbing capacity of rocks, a series of testing methods are adopted, including scanning electron microscope (SEM), X-ray diffraction and mercury injection test. It is demonstrated that the effective porosity has a positive correlation with the water absorbing capacity of rocks and the contents of illite and illite/smectite. The initial water content presents a negative correlation with the water absorption capacity of rocks. According to the absolute value of weight coefficients of various influential factors, the order of magnitude from high to low is captured: initial water content, illite, illite/smectite formation (S=5%), and the effective porosity. After water absorption tests, uniaxial compressive strength (UCS) tests were performed on rock specimens allowing a linear relationship between the UCS and the water content of rock to be established, indicating that the strength of calcareous shale decreases linearly with the increasing water content.展开更多
Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During t...Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During the excavation process of a deep soft rock tunnel, the rock wall may be compacted due to large deformation. In this paper, the technique to address this problem by a two-dimensional (2D) finite element software, large deformation engineering analyses software (LDEAS 1.0), is provided. By using the Lagrange multiplier method, the kinematic constraint of non-penetrating condition and static constraint of Coulomb friction are introduced to the governing equations in the form of incremental displacement. The numerical example demonstrates the efficiency of this technology. Deformations of a transportation tunnel in inclined soft rock strata at the depth of 1 000 m in Qishan coal mine and a tunnel excavated to three different depths are analyzed by two models, i.e. the additive decomposition model and polar decomposition model. It can be found that the deformation of the transportation tunnel is asymmetrical due to the inclination of rock strata. For extremely soft rock, large deformation can converge only for the additive decomposition model. The deformation of surrounding rocks increases with the increase in the tunnel depth for both models. At the same depth, the deformation calculated by the additive decomposition model is smaller than that by the polar decomposition model.展开更多
基金Supported by the Key Basic Research Program of China(2006CB202200)the National Major Project of Ministry of Education of China(304005)
文摘To better understand the mechanism of the strength weakening process of soft rocks in deep mines after interacting with water, a self-developed experimental system, Intelligent Testing System for Water Absorption in Deep Soft Rocks (ITSWADSR), is employed to analyze the hydrophilic behavior of deep calcareous shale sampled from Daqiang coal mine. Experimental results demonstrate that the relation between water absorption and time can be expressed by power functions, and the soakage rate decreases while the soakage increases with time. In order to quantitatively calculate the weight coefficients of the influential factors for water absorbing capacity of rocks, a series of testing methods are adopted, including scanning electron microscope (SEM), X-ray diffraction and mercury injection test. It is demonstrated that the effective porosity has a positive correlation with the water absorbing capacity of rocks and the contents of illite and illite/smectite. The initial water content presents a negative correlation with the water absorption capacity of rocks. According to the absolute value of weight coefficients of various influential factors, the order of magnitude from high to low is captured: initial water content, illite, illite/smectite formation (S=5%), and the effective porosity. After water absorption tests, uniaxial compressive strength (UCS) tests were performed on rock specimens allowing a linear relationship between the UCS and the water content of rock to be established, indicating that the strength of calcareous shale decreases linearly with the increasing water content.
基金Supported by the Fundamental Research Funds for the Central Universities of China (2009QL05)
文摘Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During the excavation process of a deep soft rock tunnel, the rock wall may be compacted due to large deformation. In this paper, the technique to address this problem by a two-dimensional (2D) finite element software, large deformation engineering analyses software (LDEAS 1.0), is provided. By using the Lagrange multiplier method, the kinematic constraint of non-penetrating condition and static constraint of Coulomb friction are introduced to the governing equations in the form of incremental displacement. The numerical example demonstrates the efficiency of this technology. Deformations of a transportation tunnel in inclined soft rock strata at the depth of 1 000 m in Qishan coal mine and a tunnel excavated to three different depths are analyzed by two models, i.e. the additive decomposition model and polar decomposition model. It can be found that the deformation of the transportation tunnel is asymmetrical due to the inclination of rock strata. For extremely soft rock, large deformation can converge only for the additive decomposition model. The deformation of surrounding rocks increases with the increase in the tunnel depth for both models. At the same depth, the deformation calculated by the additive decomposition model is smaller than that by the polar decomposition model.