期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Limited Sea Surface Temperature Cooling Due to the Barrier Layer Promoting Super Typhoon Mangkhut(2018)
1
作者 Huipeng WANG Jiagen LI +8 位作者 Junqiang SONG Liang SUN Fu LIU Han ZHANG Kaijun REN Huizan WANG Chunming WANG Jinrong ZHANG hongze leng 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2156-2172,共17页
This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)... This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)in sea surface salinity and a weak decrease(<1℃)in sea surface temperature(SST)were observed on the right side of the typhoon track.Mangkhut-induced SST change can be divided into the three stages,corresponding to the variations in BL thickness and SST before,during,and after the passage of Mangkhut.During the pre-typhoon stage,SST slightly warmed due to the entrainment of BL warm water,which suppressed the cooling induced by surface heat fluxes and horizontal advection.During the forced stage,SST cooling was controlled by entrainment,and the preexisting BL reduced the total cooling by 0.89℃ d-1,thus significantly weakening the overall SST cooling induced by Mangkhut.During the relaxation stage,the SST cooling was primarily caused by the entrainment.Our results indicate that a preexisting BL can limit typhoon-induced SST cooling by suppressing the entrainment of cold thermocline water,which contributed to Mangkhut becoming the strongest typhoon in 2018. 展开更多
关键词 sea surface cooling mixed-layer depth barrier layer TYPHOON
下载PDF
Validation of the multi-satellite merged sea surface salinity in the South China Sea
2
作者 Huipeng WANG Junqiang SONG +3 位作者 Chengwu ZHAO Xiangrong YANG hongze leng Nan ZHOU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第6期2033-2044,共12页
Sea surface salinity(SSS)is an essential variable of ocean dynamics and climate research.The Soil Moisture and Ocean Salinity(SMOS),Aquarius,and Soil Moisture Active Passive(SMAP)satellite missions all provide SSS mea... Sea surface salinity(SSS)is an essential variable of ocean dynamics and climate research.The Soil Moisture and Ocean Salinity(SMOS),Aquarius,and Soil Moisture Active Passive(SMAP)satellite missions all provide SSS measurements.The European Space Agency(ESA)Climate Change Initiative Sea Surface Salinity(CCI-SSS)project merged these three satellite SSS data to produce CCI L4SSS products.We validated the accuracy of the four satellite products(CCI,SMOS,Aquarius,and SMAP)using in-situ gridded data and Argo floats in the South China Sea(SCS).Compared with in-situ gridded data,it shows that the CCI achieved the best performance(RMSD:0.365)on monthly time scales.The RMSD of SMOS,Aquarius,and SMAP(SMOS:0.389;Aquarius:0.409;SMAP:0.391)are close,and the SMOS takes a slight advantage in contrast with Aquarius and SMAP.Large discrepancies can be found near the coastline and in the shelf seas.Meanwhile,CCI with lower RMSD(0.295)perform better than single satellite data(SMOS:0.517;SMAP:0.297)on weekly time scales compared with Argo floats.Overall,the merged CCI have the smallest RMSD among the four satellite products in the SCS on both weekly time scales and monthly time scales,which illustrates the improved accuracy of merged CCI compared with the individual satellite data. 展开更多
关键词 sea surface salinity(SSS) South China Sea(SCS) ARGO multi-satellite merged data VALIDATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部