We deal with the Wick-type stochastic fractional Korteweg de–Vries(KdV) equation with conformable derivatives.With the aid of the Exp-function method, white noise theory, and Hermite transform, we produce a novel set...We deal with the Wick-type stochastic fractional Korteweg de–Vries(KdV) equation with conformable derivatives.With the aid of the Exp-function method, white noise theory, and Hermite transform, we produce a novel set of exact soliton and periodic wave solutions to the fractional KdV equation with conformable derivatives. With the help of inverse Hermite transform, we get stochastic soliton and periodic wave solutions of the Wick-type stochastic fractional KdV equation with conformable derivatives. Eventually, by an application example, we show how the stochastic solutions can be given as Brownian motion functional solutions.展开更多
A modified fractional sub-equation method is applied to Wick-type stochastic fractional two-dimensional (2D) KdV equations. With the help of a Hermit transform, we obtain a new set of exact stochastic solutions to W...A modified fractional sub-equation method is applied to Wick-type stochastic fractional two-dimensional (2D) KdV equations. With the help of a Hermit transform, we obtain a new set of exact stochastic solutions to Wick-type stochastic fractional 2D KdV equations in the white noise space. These solutions include exponential decay wave solutions, soliton wave solutions, and periodic wave solutions. Two examples are explicitly given to illustrate our approach.展开更多
基金the Deanship of Scientific Research at King Khalid University for funding their work through Research Group Program under grant number(G.P.1/160/40)。
文摘We deal with the Wick-type stochastic fractional Korteweg de–Vries(KdV) equation with conformable derivatives.With the aid of the Exp-function method, white noise theory, and Hermite transform, we produce a novel set of exact soliton and periodic wave solutions to the fractional KdV equation with conformable derivatives. With the help of inverse Hermite transform, we get stochastic soliton and periodic wave solutions of the Wick-type stochastic fractional KdV equation with conformable derivatives. Eventually, by an application example, we show how the stochastic solutions can be given as Brownian motion functional solutions.
文摘A modified fractional sub-equation method is applied to Wick-type stochastic fractional two-dimensional (2D) KdV equations. With the help of a Hermit transform, we obtain a new set of exact stochastic solutions to Wick-type stochastic fractional 2D KdV equations in the white noise space. These solutions include exponential decay wave solutions, soliton wave solutions, and periodic wave solutions. Two examples are explicitly given to illustrate our approach.