Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alterna...Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics.展开更多
The focus of this paper is on two novel linearized Crank-Nicolson schemes with nonconforming quadrilateral finite element methods(FEMs)for the nonlinear coupled Schrodinger-Helmholtz equations.Optimal L^(2) and H^(1) ...The focus of this paper is on two novel linearized Crank-Nicolson schemes with nonconforming quadrilateral finite element methods(FEMs)for the nonlinear coupled Schrodinger-Helmholtz equations.Optimal L^(2) and H^(1) estimates of orders O(h^(2)+τ^(2))and O(h^(2)+τ^(2))are derived respectively without any grid-ratio condition through the following two keys.One is that a time-discrete system is introduced to split the error into the temporal error and the spatial error,which leads to optimal temporal error estimates of order O(τ^(2))in L^(2) and the broken H^(1)-norms,as well as the uniform boundness of numerical solutions in L^(∞) norm.The other is that a novel projection is utilized,which can iron out the difficulty of the existence of the consistency errors.This leads to derive optimal spatial error estimates of orders O(h^(2))in L^(2)-norm and O(h)in the broken H^(1)-norm under the H^(2) regularity of the solutions for the time-discrete system.At last,two numerical examples are provided to confirm the theoretical analysis.Here,h is the subdivision parameter,and τ is the time step.展开更多
The focus of this paper is on a linearized backward differential formula(BDF)scheme with Galerkin FEM for the nonlinear Klein-Gordon-Schrödinger equations(KGSEs)with damping mechanism.Optimal error estimates and ...The focus of this paper is on a linearized backward differential formula(BDF)scheme with Galerkin FEM for the nonlinear Klein-Gordon-Schrödinger equations(KGSEs)with damping mechanism.Optimal error estimates and superconvergence results are proved without any time-step restriction condition for the proposed scheme.The proof consists of three ingredients.First,a temporal-spatial error splitting argument is employed to bound the numerical solution in certain strong norms.Second,optimal error estimates are derived through a novel splitting technique to deal with the time derivative and some sharp estimates to cope with the nonlinear terms.Third,by virtue of the relationship between the Ritz projection and the interpolation,as well as a so-called"lifting"technique,the superconvergence behavior of order O(h^(2)+τ^(2))in H^(1)-norm for the original variables are deduced.Finally,a numerical experiment is conducted to confirm our theoretical analysis.Here,h is the spatial subdivision parameter,andτis the time step.展开更多
Transparent electromagnetic(EM)shielding glass with a metal mesh has significant potential for application in different fields of EM radiation and anti-EM interference light-transmitting observation windows.In particu...Transparent electromagnetic(EM)shielding glass with a metal mesh has significant potential for application in different fields of EM radiation and anti-EM interference light-transmitting observation windows.In particular,a transparent EM-shielding glass with a large-aspect-ratio metal mesh can effectively alleviate the contradictory problems of shielding effectiveness and light-transmission performance constraints.However,the fabrication of high-aspect-ratio metal meshes on glass substrates has problems such as high cost,complex processes,low efficiency,small area,and easy damage issues,which limit their application in the field of high-performance,transparent EM-shielding glass.Therefore,this paper proposes a composite additive manufacturing process based on electric-field-driven microjet 3D printing and electroplating.By fabricating metal meshes with an Ag-Cu core-shell structure on a glass substrate,EM-shielding glass with high shielding efficiency and light transmission can be manufactured without increasing the aspect ratio of the metal meshes.The prepared Ag-Cu composite metal mesh has excellent optoelectronic properties(period 250𝜇m,line width 10𝜇m,90.1%transmission at 550 nm visible light,square resistance 0.21Ω/sq),efficient electrothermal effect(3 V DC voltage can reach 189°C steady-state temperature),stable EM-shielding effectiveness(average shielding effectiveness 23 dB at X-band),and acceptable mechanical and environmental stability(less than 3%change in square resistance after 150-times adhesion test and less than 6%and 0.6%change in resistance after 72 h in acid and alkali environments,respectively).This method provides a new solution for the mass production of high-performance large-area transparent electric heating/EM-shielding glass.展开更多
In this paper, a fully discrete scheme based on the LI approximation in temporal direction for the fractional derivative of order in (0,1) and nonconforming mixed finite element method (MFEM) in spatial direction is e...In this paper, a fully discrete scheme based on the LI approximation in temporal direction for the fractional derivative of order in (0,1) and nonconforming mixed finite element method (MFEM) in spatial direction is established. First, we prove a novel result of the consistency error estimate with order O(h^2)of EQ1^rot element (see Lemma 2.3). Then, by using the proved character of EQ1^rot element, we present the superconvergent estimates for the original variable u in the broken H^1-norm and the flux →p =△u in the (L^2)^2-norm under a weaker regularity of the exact solution. Finally, numerical results are provided to confirm the theoretical analysis.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52175331)the Support plan for Outstanding Youth Innovation Team in Universities of Shandong Province,China(Grand No.2020KJB003)Natural Science Foundation of Shandong Province,China(Granted Nos.ZR2022ME014,ZR2021ME139 and ZR2020ZD04)。
文摘Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics.
基金supported by the National Natural Science Foundation of China(Grant No.12071443)by the Key Scientific Research Projects of Henan Colleges and Universities(Grant No.20B110013).
文摘The focus of this paper is on two novel linearized Crank-Nicolson schemes with nonconforming quadrilateral finite element methods(FEMs)for the nonlinear coupled Schrodinger-Helmholtz equations.Optimal L^(2) and H^(1) estimates of orders O(h^(2)+τ^(2))and O(h^(2)+τ^(2))are derived respectively without any grid-ratio condition through the following two keys.One is that a time-discrete system is introduced to split the error into the temporal error and the spatial error,which leads to optimal temporal error estimates of order O(τ^(2))in L^(2) and the broken H^(1)-norms,as well as the uniform boundness of numerical solutions in L^(∞) norm.The other is that a novel projection is utilized,which can iron out the difficulty of the existence of the consistency errors.This leads to derive optimal spatial error estimates of orders O(h^(2))in L^(2)-norm and O(h)in the broken H^(1)-norm under the H^(2) regularity of the solutions for the time-discrete system.At last,two numerical examples are provided to confirm the theoretical analysis.Here,h is the subdivision parameter,and τ is the time step.
基金supported by the National Natural Science Foundation of China(No.11671369,No.12071443)Key Scientific Research Project of Colleges and Universities in Henan Province(No.20B110013).
文摘The focus of this paper is on a linearized backward differential formula(BDF)scheme with Galerkin FEM for the nonlinear Klein-Gordon-Schrödinger equations(KGSEs)with damping mechanism.Optimal error estimates and superconvergence results are proved without any time-step restriction condition for the proposed scheme.The proof consists of three ingredients.First,a temporal-spatial error splitting argument is employed to bound the numerical solution in certain strong norms.Second,optimal error estimates are derived through a novel splitting technique to deal with the time derivative and some sharp estimates to cope with the nonlinear terms.Third,by virtue of the relationship between the Ritz projection and the interpolation,as well as a so-called"lifting"technique,the superconvergence behavior of order O(h^(2)+τ^(2))in H^(1)-norm for the original variables are deduced.Finally,a numerical experiment is conducted to confirm our theoretical analysis.Here,h is the spatial subdivision parameter,andτis the time step.
基金supported by National Natural Science Foundation of China(Grant No.52175331)Shandong Provincial National Natural Science Foundation of China(Grant Nos.ZR2020ZD04,ZR2022ME014,ZR2022QE077)Support Plan for Outstanding Youth Innovation Team in Universities of Shandong Province of China(Grant No.2020KJB003).
文摘Transparent electromagnetic(EM)shielding glass with a metal mesh has significant potential for application in different fields of EM radiation and anti-EM interference light-transmitting observation windows.In particular,a transparent EM-shielding glass with a large-aspect-ratio metal mesh can effectively alleviate the contradictory problems of shielding effectiveness and light-transmission performance constraints.However,the fabrication of high-aspect-ratio metal meshes on glass substrates has problems such as high cost,complex processes,low efficiency,small area,and easy damage issues,which limit their application in the field of high-performance,transparent EM-shielding glass.Therefore,this paper proposes a composite additive manufacturing process based on electric-field-driven microjet 3D printing and electroplating.By fabricating metal meshes with an Ag-Cu core-shell structure on a glass substrate,EM-shielding glass with high shielding efficiency and light transmission can be manufactured without increasing the aspect ratio of the metal meshes.The prepared Ag-Cu composite metal mesh has excellent optoelectronic properties(period 250𝜇m,line width 10𝜇m,90.1%transmission at 550 nm visible light,square resistance 0.21Ω/sq),efficient electrothermal effect(3 V DC voltage can reach 189°C steady-state temperature),stable EM-shielding effectiveness(average shielding effectiveness 23 dB at X-band),and acceptable mechanical and environmental stability(less than 3%change in square resistance after 150-times adhesion test and less than 6%and 0.6%change in resistance after 72 h in acid and alkali environments,respectively).This method provides a new solution for the mass production of high-performance large-area transparent electric heating/EM-shielding glass.
基金the National Natural Science Foundation of China (No. 1167136911271340).
文摘In this paper, a fully discrete scheme based on the LI approximation in temporal direction for the fractional derivative of order in (0,1) and nonconforming mixed finite element method (MFEM) in spatial direction is established. First, we prove a novel result of the consistency error estimate with order O(h^2)of EQ1^rot element (see Lemma 2.3). Then, by using the proved character of EQ1^rot element, we present the superconvergent estimates for the original variable u in the broken H^1-norm and the flux →p =△u in the (L^2)^2-norm under a weaker regularity of the exact solution. Finally, numerical results are provided to confirm the theoretical analysis.