Shale oil resources have proven to be quickly producible in large quantities and have recently revolutionized the oil and gas industry.The oil content in a shale oil formation includes free oil contained in pores and ...Shale oil resources have proven to be quickly producible in large quantities and have recently revolutionized the oil and gas industry.The oil content in a shale oil formation includes free oil contained in pores and trapped oil in the organic material called kerogen.The latter can represent a significant portion of the total oil and yet pro-duction of shale oil currently targets only the free oil rather than the trapped oil in kerogen.Shale oil reservoirs also have a substantial capacity to store CO_(2)by dissolving it in kerogen.In this paper,recent progress in the research of CO_(2)-kerogen interaction and its applications in CO_(2)enhanced oil recovery and carbon sequestration in shale oil reservoirs are reviewed.The relevant topics reviewed for this relatively new area include charac-terization of organic matter,supercritical CO_(2)extraction of oil in shale,experimental and simulation study of CO_(2)-hydrocarbons counter-current diffusion in organic matter,recovery of oil in kerogen during CO_(2)huff‘n’puffprocess,and changes in microstructure of shale caused by CO_(2)-kerogen interaction.The results presented in this paper show that at reservoir conditions,supercritical CO_(2)can spontaneously replace the hydrocarbons from the organic matter of shale formations.This mass transfer process is the key to releasing organic oil saturation and maximizing the capacity of carbon storage of a shale oil reservoir.It also presents a concern of the structure change of organic materials for long term CO_(2)sequestration with shale or mudstone as the sealing rocks.展开更多
Abstract:As an important component of the atmosphere,ammonia(NH_(3))plays a very important role in maintaining the balance of environment.However,it is also one of the most toxic gases that can cause damage to the hum...Abstract:As an important component of the atmosphere,ammonia(NH_(3))plays a very important role in maintaining the balance of environment.However,it is also one of the most toxic gases that can cause damage to the human respiratory system and mucous membranes even at low concentrations.As such,development of highly sensitive and selective NH_(3)sensors is of high significance for environmental monitoring and health maintenance.Herein,we have synthesized Au@Ag@Ag Cl core-shell nanoparticles(NPs)by oxidative etching and precipitating Au@Ag core-shell NPs using FeCl3 and further used them as optical probes for the colorimetric detection of NH_(3).The sensing mechanism is based on the fact that the etching of NH_(3)on AgCl and Ag shell leads to the variations of ingredients and core-to-shell ratio of the Au@Ag@AgCl NPs,thereby inducing noticeable spectral and color changes.By replacing the outmost layer of Ag with AgCl,not only is the stability of the sensor against oxygen significantly enhanced,but also is the sensitivity of the method improved.The method exhibits good linear relationship for the detection of NH_(3)from 0 to 5000 mmol/L with the limit of detection of 6.4 mmol/L.This method was successfully applied to the detection of simulated air polluted by NH_(3),indicating its practical applicability for environmental monitoring.This method shows great potential for on-site NH_(3)detection particularly in remote area,where a simple,fast,low-cost,and easy-to-handle method is highly desirable.展开更多
基金supports by the Natural Science Foundation of China(42090024,51774310)by a Discovery Grant of Natural Sciences and Engineering Council(ESERC)of Canada.
文摘Shale oil resources have proven to be quickly producible in large quantities and have recently revolutionized the oil and gas industry.The oil content in a shale oil formation includes free oil contained in pores and trapped oil in the organic material called kerogen.The latter can represent a significant portion of the total oil and yet pro-duction of shale oil currently targets only the free oil rather than the trapped oil in kerogen.Shale oil reservoirs also have a substantial capacity to store CO_(2)by dissolving it in kerogen.In this paper,recent progress in the research of CO_(2)-kerogen interaction and its applications in CO_(2)enhanced oil recovery and carbon sequestration in shale oil reservoirs are reviewed.The relevant topics reviewed for this relatively new area include charac-terization of organic matter,supercritical CO_(2)extraction of oil in shale,experimental and simulation study of CO_(2)-hydrocarbons counter-current diffusion in organic matter,recovery of oil in kerogen during CO_(2)huff‘n’puffprocess,and changes in microstructure of shale caused by CO_(2)-kerogen interaction.The results presented in this paper show that at reservoir conditions,supercritical CO_(2)can spontaneously replace the hydrocarbons from the organic matter of shale formations.This mass transfer process is the key to releasing organic oil saturation and maximizing the capacity of carbon storage of a shale oil reservoir.It also presents a concern of the structure change of organic materials for long term CO_(2)sequestration with shale or mudstone as the sealing rocks.
基金supported by the Graduate Student Innovation Project of China University of Petroleum(East China)in 2020(No.YCX2020031)the financial support by the National Natural Science Foundation of China(Nos.21876206,21505157)+1 种基金the Fundamental Research Funds for the Central Universities(China University of Petroleum(East China),Nos.18CX02037A,20CX05015A)the Youth Innovation and Technology project of Universities in Shandong Province(No.2020KJC007)。
文摘Abstract:As an important component of the atmosphere,ammonia(NH_(3))plays a very important role in maintaining the balance of environment.However,it is also one of the most toxic gases that can cause damage to the human respiratory system and mucous membranes even at low concentrations.As such,development of highly sensitive and selective NH_(3)sensors is of high significance for environmental monitoring and health maintenance.Herein,we have synthesized Au@Ag@Ag Cl core-shell nanoparticles(NPs)by oxidative etching and precipitating Au@Ag core-shell NPs using FeCl3 and further used them as optical probes for the colorimetric detection of NH_(3).The sensing mechanism is based on the fact that the etching of NH_(3)on AgCl and Ag shell leads to the variations of ingredients and core-to-shell ratio of the Au@Ag@AgCl NPs,thereby inducing noticeable spectral and color changes.By replacing the outmost layer of Ag with AgCl,not only is the stability of the sensor against oxygen significantly enhanced,but also is the sensitivity of the method improved.The method exhibits good linear relationship for the detection of NH_(3)from 0 to 5000 mmol/L with the limit of detection of 6.4 mmol/L.This method was successfully applied to the detection of simulated air polluted by NH_(3),indicating its practical applicability for environmental monitoring.This method shows great potential for on-site NH_(3)detection particularly in remote area,where a simple,fast,low-cost,and easy-to-handle method is highly desirable.