期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Review of CO_(2)-kerogen interaction and its effects on enhanced oil recovery and carbon sequestration in shale oil reservoirs
1
作者 Mingzhe Dong houjian gong +2 位作者 Qian Sang Xinyi Zhao Chaofan Zhu 《Resources Chemicals and Materials》 2022年第1期93-113,共21页
Shale oil resources have proven to be quickly producible in large quantities and have recently revolutionized the oil and gas industry.The oil content in a shale oil formation includes free oil contained in pores and ... Shale oil resources have proven to be quickly producible in large quantities and have recently revolutionized the oil and gas industry.The oil content in a shale oil formation includes free oil contained in pores and trapped oil in the organic material called kerogen.The latter can represent a significant portion of the total oil and yet pro-duction of shale oil currently targets only the free oil rather than the trapped oil in kerogen.Shale oil reservoirs also have a substantial capacity to store CO_(2)by dissolving it in kerogen.In this paper,recent progress in the research of CO_(2)-kerogen interaction and its applications in CO_(2)enhanced oil recovery and carbon sequestration in shale oil reservoirs are reviewed.The relevant topics reviewed for this relatively new area include charac-terization of organic matter,supercritical CO_(2)extraction of oil in shale,experimental and simulation study of CO_(2)-hydrocarbons counter-current diffusion in organic matter,recovery of oil in kerogen during CO_(2)huff‘n’puffprocess,and changes in microstructure of shale caused by CO_(2)-kerogen interaction.The results presented in this paper show that at reservoir conditions,supercritical CO_(2)can spontaneously replace the hydrocarbons from the organic matter of shale formations.This mass transfer process is the key to releasing organic oil saturation and maximizing the capacity of carbon storage of a shale oil reservoir.It also presents a concern of the structure change of organic materials for long term CO_(2)sequestration with shale or mudstone as the sealing rocks. 展开更多
关键词 Shale oil reservoir Organic matter Supercritical CO_(2)-kerogen interaction Counter-current diffusion Enhanced oil recovery CO_(2)sequestration
下载PDF
Highly sensitive colorimetric detection of NH3 based on Au@Ag@AgCl core-shell nanoparticles
2
作者 Zhiwei Qiu Yitong Xue +5 位作者 Jiyong Li Yunzhi Zhang Xinyi Liang Congying Wen houjian gong Jingbin Zeng 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第9期2807-2811,共5页
Abstract:As an important component of the atmosphere,ammonia(NH_(3))plays a very important role in maintaining the balance of environment.However,it is also one of the most toxic gases that can cause damage to the hum... Abstract:As an important component of the atmosphere,ammonia(NH_(3))plays a very important role in maintaining the balance of environment.However,it is also one of the most toxic gases that can cause damage to the human respiratory system and mucous membranes even at low concentrations.As such,development of highly sensitive and selective NH_(3)sensors is of high significance for environmental monitoring and health maintenance.Herein,we have synthesized Au@Ag@Ag Cl core-shell nanoparticles(NPs)by oxidative etching and precipitating Au@Ag core-shell NPs using FeCl3 and further used them as optical probes for the colorimetric detection of NH_(3).The sensing mechanism is based on the fact that the etching of NH_(3)on AgCl and Ag shell leads to the variations of ingredients and core-to-shell ratio of the Au@Ag@AgCl NPs,thereby inducing noticeable spectral and color changes.By replacing the outmost layer of Ag with AgCl,not only is the stability of the sensor against oxygen significantly enhanced,but also is the sensitivity of the method improved.The method exhibits good linear relationship for the detection of NH_(3)from 0 to 5000 mmol/L with the limit of detection of 6.4 mmol/L.This method was successfully applied to the detection of simulated air polluted by NH_(3),indicating its practical applicability for environmental monitoring.This method shows great potential for on-site NH_(3)detection particularly in remote area,where a simple,fast,low-cost,and easy-to-handle method is highly desirable. 展开更多
关键词 NH3 detection Au@Ag@AgCl nanoparticles Localized surface plasmon resonance ETCHING Colorimetric sensor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部