Background Intrauterine growth retardation(IUGR)affects intestinal growth,morphology,and function,which leads to poor growth performance and high mortality.The present study explored whether maternal dietary methyl do...Background Intrauterine growth retardation(IUGR)affects intestinal growth,morphology,and function,which leads to poor growth performance and high mortality.The present study explored whether maternal dietary methyl donor(MET)supplementation alleviates IUGR and enhances offspring’s growth performance by improving intestinal growth,function,and DNA methylation of the ileum in a porcine IUGR model.Methods Forty multiparous sows were allocated to the control or MET diet groups from mating until delivery.After farrowing,8 pairs of IUGR and normal birth weight piglets from 8 litters were selected for sampling before suckling colostrum.Results The results showed that maternal MET supplementation tended to decrease the IUGR incidence and increased the average weaning weight of piglets.Moreover,maternal MET supplementation significantly reduced the plasma concentrations of isoleucine,cysteine,urea,and total amino acids in sows and newborn pig-lets.It also increased lactase and sucrase activity in the jejunum of newborn piglets.MET addition resulted in lower ileal methionine synthase activity and increased betaine homocysteine S-methyltransferase activity in the ileum of newborn piglets.DNA methylation analysis of the ileum showed that MET supplementation increased the methyla-tion level of DNA CpG sites in the ileum of newborn piglets.Down-regulated differentially methylated genes were enriched in folic acid binding,insulin receptor signaling pathway,and endothelial cell proliferation.In contrast,up-regulated methylated genes were enriched in growth hormone receptor signaling pathway and nitric oxide biosyn-thetic process.Conclusions Maternal MET supplementation can reduce the incidence of IUGR and increase the weaning litter weight of piglets,which may be associated with better intestinal function and methylation status.展开更多
In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen wit...In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen with a relatively high level of amino acids.However,systematic identification and molecular characterization of the LHT gene family has rarely been reported in tea plants.In this study,22 CsLHTs were identified from the‘Shuchazao’genome and classified into two groups.The modeled three-dimensional structure and the conserved domains presented a high similarity among the LHTs proteins.Moreover,it was predicted that a few genes were conserved through the analysis of the physiochemical characters,structures and cis-elements in promoters.The expression patterns in tea plants revealed that CsLHT7 was mainly expressed in the roots,and CsLHT4 and CsLHT11 exhibited relatively high expression in both the roots and leaves.Moreover,the expression of all three genes could be induced by organic nitrogen.Additionally,heterogeneous expression of CsLHT4,CsLHT7 and CsLHT11 in Arabidopsis thaliana decreased the aerial parts biomass compared with that in WT plants while significantly increased the rosette biomass only for CsLHT11transgenic plants versus WT plants.Overall,our results provide fundamental information about CsLHTs and potential genes in N utilization for further analysis in tea plants.展开更多
Background The aim of this experiment was to investigate the effect of different levels of betaine(Bet)inclusion in the diet on the intestinal health of growing rabbits under summer heat.A total of 100 weaned Qixing m...Background The aim of this experiment was to investigate the effect of different levels of betaine(Bet)inclusion in the diet on the intestinal health of growing rabbits under summer heat.A total of 100 weaned Qixing meat rabbits aged 35 d with body weight of 748.61±38.59 g were randomly divided into 5 treatment groups:control group(basal diet)and Bet groups(basal diet+0.75,1.0,1.5 or 2.0 g/kg Bet).The average daily temperature in the rabbitry during the experiment was 30.48°C and the relative humidity was 69.44%.Results Dietary addition of Bet had no significant effect on growth performance and health status of growing rabbits(P>0.05),but it increased ileal secretory immunoglobulin A content compared to the control under summer heat(P<0.05).Addition of 0.75 g/kg Bet up-regulated jejunal IL-4,down-regulated ileal TNF-αexpression(P<0.05).The addition of 1.0 g/kg Bet increased the villi height(VH)in the jejunum(P<0.05).Serum glucose levels were reduced,and the expression of SLC6A20 was up-regulated in jejunum and ileum of rabbits fed with 1.5 g/kg Bet(P<0.05).When added at 2.0 g/kg,Bet reduced serum HSP70 content,increased jejunal VH,and up-regulated duodenal SLC7A6,SLC38A2,mTOR and 4EBP-2 expression(P<0.05).Correlation analysis revealed that intestinal mTOR expression was significantly and positively correlated with SLC7A6,SLC38A2,SLC36A1 and IL-4 expression(P<0.05).Conclusions Dietary addition of Bet can up-regulate the expression of anti-inflammatory factors through the AAT/mTOR pathway,improve the intestinal immune function,alleviate intestinal damage in growing rabbits caused by summer heat,and improve intestinal health.展开更多
Background Zinc glycine chelate(Zn-Gly)has anti-inflammation and growth-promoting properties;however,the mechanism of Zn-Gly contribution to gut barrier function in Cherry Valley ducks during intestinal inflammation i...Background Zinc glycine chelate(Zn-Gly)has anti-inflammation and growth-promoting properties;however,the mechanism of Zn-Gly contribution to gut barrier function in Cherry Valley ducks during intestinal inflammation is unknown.Three-hundred 1-day-old ducks were divided into 5 groups(6 replicates and 10 ducks per replicate)in a completely randomized design:the control and dextran sulfate sodium(DSS)groups were fed a corn-soybean meal basal diet,and experimental groups received supplements of 70,120 or 170 mg/kg Zn in form of Zn-Gly.The DSS and treatment groups were given 2 mL of 0.45 g/mL DSS daily during d 15–21,and the control group received normal saline.The experiment lasted 21 d.Results Compared with DSS group,70,120 and 170 mg/kg Zn significantly increased body weight(BW),villus height and the ratio of villus to crypt,and significantly decreased the crypt depth of jejunum at 21 d.The number of goblet cells in jejunal villi in the Zn-Gly group was significantly increased by periodic acid-Schiff staining.Compared with control,the content of intestinal permeability marker D-lactic acid(D-LA)and fluxes of fluorescein isothiocyanate(FITC-D)in plasma of DSS group significantly increased,and 170 mg/kg Zn supplementation significantly decreased the D-LA content and FITC-D fluxes.Compared with control,contents of plasma,jejunum endotoxin and jejunum pro-inflammatory factors IL-1β,IL-6 and TNF-αwere significantly increased in DSS group,and were significantly decreased by 170 mg/kg Zn supplementation.Dietary Zn significantly increased the contents of anti-inflammatory factors IL-10,IL-22 and sIgA and IgG in jejunum.Real-time PCR and Western blot results showed that 170 mg/kg Zn supplementation significantly increased mRNA expression levels of CLDN-1 and expression of OCLN protein in jejunum,and decreased gene and protein expression of CLDN-2 compared with DSS group.The 120 mg/kg Zn significantly promoted the expressions of IL-22 and IgA.Dietary Zn-Gly supplementation significantly decreased pro-inflammatory genes IL-8 and TNF-αexpression levels and TNF-αprotein expression in jejunum.Additionally,Zn significantly reduced the gene and protein expression of TLR4,MYD88 and NF-κB p65.Conclusions Zn-Gly improved duck BW and alleviated intestinal injury by regulating intestinal morphology,barrier function and gut inflammation-related signal pathways TLR4/MYD88/NF-κB p65.展开更多
为了提升驱油用聚合物在苛刻油藏环境中的耐温与抗盐性,设计合成了一种以多元胺-丙烯酸甲酯为聚合前体,具有超支化结构的聚酰胺-胺类单体,并在此基础上合成了一种长效抗剪切聚合物(LSRP)。考查了聚合单体浓度、引发温度、聚合时间、引...为了提升驱油用聚合物在苛刻油藏环境中的耐温与抗盐性,设计合成了一种以多元胺-丙烯酸甲酯为聚合前体,具有超支化结构的聚酰胺-胺类单体,并在此基础上合成了一种长效抗剪切聚合物(LSRP)。考查了聚合单体浓度、引发温度、聚合时间、引发剂组成和加量及水解度等因素对LSRP溶液黏度的影响,采用FTIR和1HNMR表征了单体及聚合物结构,对聚合物增黏、抗剪切、抗盐、注入性及驱油性能进行了评价。结果表明:聚合物LSRP具有较好的增黏能力、抗剪切性和稳定性,当原油黏度70~300 m Pa·s时,室内驱油实验采收率较水驱增加20%以上,矿场试验注入后期压力平稳上升。展开更多
Vascular endothelial growth factor(VEGF) is primarily known as a proangiogenic factor and is one of the most important growth and survival factors affecting the vascular endothelium. However, recent studies have shown...Vascular endothelial growth factor(VEGF) is primarily known as a proangiogenic factor and is one of the most important growth and survival factors affecting the vascular endothelium. However, recent studies have shown that VEGF also plays a vital role in the immune environment. In addition to the traditional growth factor role of VEGF and VEGF receptors(VEGFRs), they have a complicated relationship with various immune cells. VEGF also reportedly inhibits the differentiation and function of immune cells during hematopoiesis. Dendritic cells(DCs), macrophages, and lymphocytes further express certain types of VEGF receptors.VEGF can be secreted as well by tumor cells through the autocrine pathway and can stimulate the function of cancer stemness.This review will provide a paradigm shift in our understanding of the role of VEGF/VEGFR signaling in the immune and cancer environment.展开更多
基金This work was supported by Sichuan Provincial Science Fund for Distinguished Young Scholars(Grant No.2020JDJQ0041)CARS-35 and Sichuan Key Science and Technology Project(NO.2021ZDZX0009).
文摘Background Intrauterine growth retardation(IUGR)affects intestinal growth,morphology,and function,which leads to poor growth performance and high mortality.The present study explored whether maternal dietary methyl donor(MET)supplementation alleviates IUGR and enhances offspring’s growth performance by improving intestinal growth,function,and DNA methylation of the ileum in a porcine IUGR model.Methods Forty multiparous sows were allocated to the control or MET diet groups from mating until delivery.After farrowing,8 pairs of IUGR and normal birth weight piglets from 8 litters were selected for sampling before suckling colostrum.Results The results showed that maternal MET supplementation tended to decrease the IUGR incidence and increased the average weaning weight of piglets.Moreover,maternal MET supplementation significantly reduced the plasma concentrations of isoleucine,cysteine,urea,and total amino acids in sows and newborn pig-lets.It also increased lactase and sucrase activity in the jejunum of newborn piglets.MET addition resulted in lower ileal methionine synthase activity and increased betaine homocysteine S-methyltransferase activity in the ileum of newborn piglets.DNA methylation analysis of the ileum showed that MET supplementation increased the methyla-tion level of DNA CpG sites in the ileum of newborn piglets.Down-regulated differentially methylated genes were enriched in folic acid binding,insulin receptor signaling pathway,and endothelial cell proliferation.In contrast,up-regulated methylated genes were enriched in growth hormone receptor signaling pathway and nitric oxide biosyn-thetic process.Conclusions Maternal MET supplementation can reduce the incidence of IUGR and increase the weaning litter weight of piglets,which may be associated with better intestinal function and methylation status.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFD1000600)the National Natural Science Foundation of China(Grant No.32070376)。
文摘In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen with a relatively high level of amino acids.However,systematic identification and molecular characterization of the LHT gene family has rarely been reported in tea plants.In this study,22 CsLHTs were identified from the‘Shuchazao’genome and classified into two groups.The modeled three-dimensional structure and the conserved domains presented a high similarity among the LHTs proteins.Moreover,it was predicted that a few genes were conserved through the analysis of the physiochemical characters,structures and cis-elements in promoters.The expression patterns in tea plants revealed that CsLHT7 was mainly expressed in the roots,and CsLHT4 and CsLHT11 exhibited relatively high expression in both the roots and leaves.Moreover,the expression of all three genes could be induced by organic nitrogen.Additionally,heterogeneous expression of CsLHT4,CsLHT7 and CsLHT11 in Arabidopsis thaliana decreased the aerial parts biomass compared with that in WT plants while significantly increased the rosette biomass only for CsLHT11transgenic plants versus WT plants.Overall,our results provide fundamental information about CsLHTs and potential genes in N utilization for further analysis in tea plants.
文摘Background The aim of this experiment was to investigate the effect of different levels of betaine(Bet)inclusion in the diet on the intestinal health of growing rabbits under summer heat.A total of 100 weaned Qixing meat rabbits aged 35 d with body weight of 748.61±38.59 g were randomly divided into 5 treatment groups:control group(basal diet)and Bet groups(basal diet+0.75,1.0,1.5 or 2.0 g/kg Bet).The average daily temperature in the rabbitry during the experiment was 30.48°C and the relative humidity was 69.44%.Results Dietary addition of Bet had no significant effect on growth performance and health status of growing rabbits(P>0.05),but it increased ileal secretory immunoglobulin A content compared to the control under summer heat(P<0.05).Addition of 0.75 g/kg Bet up-regulated jejunal IL-4,down-regulated ileal TNF-αexpression(P<0.05).The addition of 1.0 g/kg Bet increased the villi height(VH)in the jejunum(P<0.05).Serum glucose levels were reduced,and the expression of SLC6A20 was up-regulated in jejunum and ileum of rabbits fed with 1.5 g/kg Bet(P<0.05).When added at 2.0 g/kg,Bet reduced serum HSP70 content,increased jejunal VH,and up-regulated duodenal SLC7A6,SLC38A2,mTOR and 4EBP-2 expression(P<0.05).Correlation analysis revealed that intestinal mTOR expression was significantly and positively correlated with SLC7A6,SLC38A2,SLC36A1 and IL-4 expression(P<0.05).Conclusions Dietary addition of Bet can up-regulate the expression of anti-inflammatory factors through the AAT/mTOR pathway,improve the intestinal immune function,alleviate intestinal damage in growing rabbits caused by summer heat,and improve intestinal health.
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC0060)。
文摘Background Zinc glycine chelate(Zn-Gly)has anti-inflammation and growth-promoting properties;however,the mechanism of Zn-Gly contribution to gut barrier function in Cherry Valley ducks during intestinal inflammation is unknown.Three-hundred 1-day-old ducks were divided into 5 groups(6 replicates and 10 ducks per replicate)in a completely randomized design:the control and dextran sulfate sodium(DSS)groups were fed a corn-soybean meal basal diet,and experimental groups received supplements of 70,120 or 170 mg/kg Zn in form of Zn-Gly.The DSS and treatment groups were given 2 mL of 0.45 g/mL DSS daily during d 15–21,and the control group received normal saline.The experiment lasted 21 d.Results Compared with DSS group,70,120 and 170 mg/kg Zn significantly increased body weight(BW),villus height and the ratio of villus to crypt,and significantly decreased the crypt depth of jejunum at 21 d.The number of goblet cells in jejunal villi in the Zn-Gly group was significantly increased by periodic acid-Schiff staining.Compared with control,the content of intestinal permeability marker D-lactic acid(D-LA)and fluxes of fluorescein isothiocyanate(FITC-D)in plasma of DSS group significantly increased,and 170 mg/kg Zn supplementation significantly decreased the D-LA content and FITC-D fluxes.Compared with control,contents of plasma,jejunum endotoxin and jejunum pro-inflammatory factors IL-1β,IL-6 and TNF-αwere significantly increased in DSS group,and were significantly decreased by 170 mg/kg Zn supplementation.Dietary Zn significantly increased the contents of anti-inflammatory factors IL-10,IL-22 and sIgA and IgG in jejunum.Real-time PCR and Western blot results showed that 170 mg/kg Zn supplementation significantly increased mRNA expression levels of CLDN-1 and expression of OCLN protein in jejunum,and decreased gene and protein expression of CLDN-2 compared with DSS group.The 120 mg/kg Zn significantly promoted the expressions of IL-22 and IgA.Dietary Zn-Gly supplementation significantly decreased pro-inflammatory genes IL-8 and TNF-αexpression levels and TNF-αprotein expression in jejunum.Additionally,Zn significantly reduced the gene and protein expression of TLR4,MYD88 and NF-κB p65.Conclusions Zn-Gly improved duck BW and alleviated intestinal injury by regulating intestinal morphology,barrier function and gut inflammation-related signal pathways TLR4/MYD88/NF-κB p65.
文摘为了提升驱油用聚合物在苛刻油藏环境中的耐温与抗盐性,设计合成了一种以多元胺-丙烯酸甲酯为聚合前体,具有超支化结构的聚酰胺-胺类单体,并在此基础上合成了一种长效抗剪切聚合物(LSRP)。考查了聚合单体浓度、引发温度、聚合时间、引发剂组成和加量及水解度等因素对LSRP溶液黏度的影响,采用FTIR和1HNMR表征了单体及聚合物结构,对聚合物增黏、抗剪切、抗盐、注入性及驱油性能进行了评价。结果表明:聚合物LSRP具有较好的增黏能力、抗剪切性和稳定性,当原油黏度70~300 m Pa·s时,室内驱油实验采收率较水驱增加20%以上,矿场试验注入后期压力平稳上升。
基金supported by grants from the key program of the National Basic Research Program of China (973 program) (Grant No. 2012CB9333004)the National Natural Science Foundation of China (Grant No. 81401888)
文摘Vascular endothelial growth factor(VEGF) is primarily known as a proangiogenic factor and is one of the most important growth and survival factors affecting the vascular endothelium. However, recent studies have shown that VEGF also plays a vital role in the immune environment. In addition to the traditional growth factor role of VEGF and VEGF receptors(VEGFRs), they have a complicated relationship with various immune cells. VEGF also reportedly inhibits the differentiation and function of immune cells during hematopoiesis. Dendritic cells(DCs), macrophages, and lymphocytes further express certain types of VEGF receptors.VEGF can be secreted as well by tumor cells through the autocrine pathway and can stimulate the function of cancer stemness.This review will provide a paradigm shift in our understanding of the role of VEGF/VEGFR signaling in the immune and cancer environment.