This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th...This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.展开更多
This article studies the fault detection filtering design problem for Roesser type two-dimensional(2-D)nonlinear systems described by uncertain 2-D Takagi-Sugeno(T-S)fuzzy models.Firstly,fuzzy Lyapunov functions are c...This article studies the fault detection filtering design problem for Roesser type two-dimensional(2-D)nonlinear systems described by uncertain 2-D Takagi-Sugeno(T-S)fuzzy models.Firstly,fuzzy Lyapunov functions are constructed and the 2-D Fourier transform is exploited,based on which a finite frequency fault detection filtering design method is proposed such that a residual signal is generated with robustness to external disturbances and sensitivity to faults.It has been shown that the utilization of available frequency spectrum information of faults and disturbances makes the proposed filtering design method more general and less conservative compared with a conventional nonfrequency based filtering design approach.Then,with the proposed evaluation function and its threshold,a novel mixed finite frequency H_(∞)/H_(-)fault detection algorithm is developed,based on which the fault can be immediately detected once the evaluation function exceeds the threshold.Finally,it is verified with simulation studies that the proposed method is effective and less conservative than conventional non-frequency and/or common Lyapunov function based filtering design methods.展开更多
Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is...Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is used to evaluate the policy.In the policy improvement process,the policy gradient based method is employed.展开更多
Dear Editor,This letter concerns about the distributed dimensionally reduction filtering for a class of cyber physical systems with denial of service(DoS)attacks.Considering each sensor exchanging measurements with ne...Dear Editor,This letter concerns about the distributed dimensionally reduction filtering for a class of cyber physical systems with denial of service(DoS)attacks.Considering each sensor exchanging measurements with neighbors subjected to finite network energy,the dimensionally reduction method is applied.展开更多
Dear Editor, This letter concerns about the security problem of underwater cyber-physical system(UCPS) for depth-keeping task in the vertical plane. A dynamic parametric model of the UCPS with ocean currents and hydro...Dear Editor, This letter concerns about the security problem of underwater cyber-physical system(UCPS) for depth-keeping task in the vertical plane. A dynamic parametric model of the UCPS with ocean currents and hydrostatic is considered. With the intelligence of the controller, the objective function of a zero-sum game between the attacker and the controller is introduced. The attacker destroys the depth-keeping task of UCPS by injecting the designed false data into the system.展开更多
This paper investigates the issue of event-triggered adaptive finite-time state-constrained control for multi-input multi-output uncertain nonlinear systems.To prevent asymmetric time-varying state constraints from be...This paper investigates the issue of event-triggered adaptive finite-time state-constrained control for multi-input multi-output uncertain nonlinear systems.To prevent asymmetric time-varying state constraints from being violated,a tan-type nonlinear mapping is established to transform the considered system into an equivalent“non-constrained”system.By employing a smooth switch function in the virtual control signals,the singularity in the traditional finite-time dynamic surface control can be avoided.Fuzzy logic systems are used to compensate for the unknown functions.A suitable event-triggering rule is introduced to determine when to transmit the control laws.Through Lyapunov analysis,the closed-loop system is proved to be semi-globally practical finite-time stable,and the state constraints are never violated.Simulations are provided to evaluate the effectiveness of the proposed approach.展开更多
基金partially supported by the National Natural Science Foundation of China (62322315,61873237)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(LR22F030003)+2 种基金the National Key Rearch and Development Funding(2018YFB1403702)the Key Rearch and Development Programs of Zhejiang Province (2023C01224)Major Project of Science and Technology Innovation in Ningbo City (2019B1003)。
文摘This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.
基金supported in part by the National Natural Science Foundation of China(62373152,62333005,U21B6001,62073143,62273121)in part by the Natural Science Funds for Excellent Young Scholars of Hebei Province in 2022(F2022202014)+1 种基金in part by Science and Technology Research Project of Colleges and Universities in Hebei Province(BJ2020017)in part by the China Postdoctoral Science Foundation(2022M711639,2023T160320).
文摘This article studies the fault detection filtering design problem for Roesser type two-dimensional(2-D)nonlinear systems described by uncertain 2-D Takagi-Sugeno(T-S)fuzzy models.Firstly,fuzzy Lyapunov functions are constructed and the 2-D Fourier transform is exploited,based on which a finite frequency fault detection filtering design method is proposed such that a residual signal is generated with robustness to external disturbances and sensitivity to faults.It has been shown that the utilization of available frequency spectrum information of faults and disturbances makes the proposed filtering design method more general and less conservative compared with a conventional nonfrequency based filtering design approach.Then,with the proposed evaluation function and its threshold,a novel mixed finite frequency H_(∞)/H_(-)fault detection algorithm is developed,based on which the fault can be immediately detected once the evaluation function exceeds the threshold.Finally,it is verified with simulation studies that the proposed method is effective and less conservative than conventional non-frequency and/or common Lyapunov function based filtering design methods.
基金the National Natural Science Foundation of China(61922063,62273255,62150026)in part by the Shanghai International Science and Technology Cooperation Project(21550760900,22510712000)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities。
文摘Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is used to evaluate the policy.In the policy improvement process,the policy gradient based method is employed.
基金This work was supported by the National Natural Science Foundation of China(62103130,62273255)the Shanghai International Science and Technology Cooperation Project(22510712000)the Fundamental Research Funds for the Central Universities.
文摘Dear Editor,This letter concerns about the distributed dimensionally reduction filtering for a class of cyber physical systems with denial of service(DoS)attacks.Considering each sensor exchanging measurements with neighbors subjected to finite network energy,the dimensionally reduction method is applied.
基金supported by the National Natural Science Foundation of China(61922063,62150026)Shanghai International Science and Technology Cooperation Project(18510711100)+2 种基金Shanghai Shuguang Project(18sg18),Shanghai Sailing Program(20YF1452900)Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)Fundamental Research Funds for the Central Universities。
文摘Dear Editor, This letter concerns about the security problem of underwater cyber-physical system(UCPS) for depth-keeping task in the vertical plane. A dynamic parametric model of the UCPS with ocean currents and hydrostatic is considered. With the intelligence of the controller, the objective function of a zero-sum game between the attacker and the controller is introduced. The attacker destroys the depth-keeping task of UCPS by injecting the designed false data into the system.
基金Project supported by the National Natural Science Foundation of China(Nos.61973204 and 61703275)。
文摘This paper investigates the issue of event-triggered adaptive finite-time state-constrained control for multi-input multi-output uncertain nonlinear systems.To prevent asymmetric time-varying state constraints from being violated,a tan-type nonlinear mapping is established to transform the considered system into an equivalent“non-constrained”system.By employing a smooth switch function in the virtual control signals,the singularity in the traditional finite-time dynamic surface control can be avoided.Fuzzy logic systems are used to compensate for the unknown functions.A suitable event-triggering rule is introduced to determine when to transmit the control laws.Through Lyapunov analysis,the closed-loop system is proved to be semi-globally practical finite-time stable,and the state constraints are never violated.Simulations are provided to evaluate the effectiveness of the proposed approach.