Coal-fired power generation is the main source of CO_(2)emission in China.To solve the problems of declined efficiency and increased costs caused by CO_(2)capture in coal-fired power systems,an integrated gasification...Coal-fired power generation is the main source of CO_(2)emission in China.To solve the problems of declined efficiency and increased costs caused by CO_(2)capture in coal-fired power systems,an integrated gasification fuel cell(IGFC)power generation technology was developed.The interaction mechanisms among coal gasification and purification,fuel cell and other components were further studied for IGFCs.Towards the direction of coal gasification and purification,we studied gasification reaction characteristics of ultrafine coal particles,ash melting characteristics and their effects on coal gasification reactions,the formation mechanism of pollutants.We further develop an elevated temperature/pressure swing adsorption rig for simultaneous H_(2)S and CO_(2)removals.The results show the validity of the Miura-Maki model to describe the gasification of Shenhua bituminous coal with a good fit between the predicted DTG curves and experimental data.The designed 8–6–1 cycle procedure can effectively remove CO_(2)and H_(2)S simultaneously with removal rate over 99.9%.In addition,transition metal oxides used as mercury removal adsorbents in coal gasified syngas were shown with great potential.The techniques presented in this paper can improve the gasification efficiency and reduce the formation of pollutants in IGFCs.展开更多
Narrow-band transmissivities in the spectral range of 150 to 9300 cml and at a uniform resolution of 25 cm-1 were calculated using the statistical narrow-band (SNB) model with the band parameters of Soufiani and Tai...Narrow-band transmissivities in the spectral range of 150 to 9300 cml and at a uniform resolution of 25 cm-1 were calculated using the statistical narrow-band (SNB) model with the band parameters of Soufiani and Taine, the more recent parameters of Andr6 and Vaillon, and the line-by-line (LBL) method along with the HITEMP-2010 spectroscopic database. Calculations of narrow-band transmissivity were conducted for gas columns of different lengths and containing different isothermal and non-isothermal CO2-H20-N2 mixtures at 1 atm. Narrow-band transmissivities calculated by the SNB model are in large relative error at many bands. The more recent SNB model parameters of Andr6 and Vaillon are more accurate than the earlier parameters of Soufiani and Taine. The Planck mean absorption coefficients of CO2, H20, CO, and CH4 in the temperature range of 300 to 2500K were calculated using the LBL method and different versions of the high resolution transmission (HITRAN) and high-temperature spectroscopic absorption parameters (HITEMP) spectroscopic databases. The SNB model was also used to calculate the Planck mean absorption coefficients of these four radiating gases. The LBL results of the Planck mean absorption coefficient were compared with the classical results of Tien and those from the SNB model.展开更多
基金This work was financially supported by National Key R&D Program of China(2017YFB0601900).
文摘Coal-fired power generation is the main source of CO_(2)emission in China.To solve the problems of declined efficiency and increased costs caused by CO_(2)capture in coal-fired power systems,an integrated gasification fuel cell(IGFC)power generation technology was developed.The interaction mechanisms among coal gasification and purification,fuel cell and other components were further studied for IGFCs.Towards the direction of coal gasification and purification,we studied gasification reaction characteristics of ultrafine coal particles,ash melting characteristics and their effects on coal gasification reactions,the formation mechanism of pollutants.We further develop an elevated temperature/pressure swing adsorption rig for simultaneous H_(2)S and CO_(2)removals.The results show the validity of the Miura-Maki model to describe the gasification of Shenhua bituminous coal with a good fit between the predicted DTG curves and experimental data.The designed 8–6–1 cycle procedure can effectively remove CO_(2)and H_(2)S simultaneously with removal rate over 99.9%.In addition,transition metal oxides used as mercury removal adsorbents in coal gasified syngas were shown with great potential.The techniques presented in this paper can improve the gasification efficiency and reduce the formation of pollutants in IGFCs.
文摘Narrow-band transmissivities in the spectral range of 150 to 9300 cml and at a uniform resolution of 25 cm-1 were calculated using the statistical narrow-band (SNB) model with the band parameters of Soufiani and Taine, the more recent parameters of Andr6 and Vaillon, and the line-by-line (LBL) method along with the HITEMP-2010 spectroscopic database. Calculations of narrow-band transmissivity were conducted for gas columns of different lengths and containing different isothermal and non-isothermal CO2-H20-N2 mixtures at 1 atm. Narrow-band transmissivities calculated by the SNB model are in large relative error at many bands. The more recent SNB model parameters of Andr6 and Vaillon are more accurate than the earlier parameters of Soufiani and Taine. The Planck mean absorption coefficients of CO2, H20, CO, and CH4 in the temperature range of 300 to 2500K were calculated using the LBL method and different versions of the high resolution transmission (HITRAN) and high-temperature spectroscopic absorption parameters (HITEMP) spectroscopic databases. The SNB model was also used to calculate the Planck mean absorption coefficients of these four radiating gases. The LBL results of the Planck mean absorption coefficient were compared with the classical results of Tien and those from the SNB model.