期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Microstructural Characterization of the Shear Bands in Fe-Cr-Ni Single Crystal by EBSD 被引量:1
1
作者 huajie yang J.H.Zhang +1 位作者 Yongbo XU Marc Andre' Meyers 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第6期819-828,共10页
An investigation has been made into the microstructural characterization of the shear bands generated under high-strain rate (≈10^4 s^-1) deformation in Fe-15%Cr-15%Ni single crystal by EBSD-SEM (electron backscat... An investigation has been made into the microstructural characterization of the shear bands generated under high-strain rate (≈10^4 s^-1) deformation in Fe-15%Cr-15%Ni single crystal by EBSD-SEM (electron backscatter diffraction-scanning electron microscopy), TEM (transmission electron in microscopy) and HREM (high- resolution electron microscopy). The results reveal that the propagation of the shear band exhibits an asymmetrical behavior arising from inhomogenous distribution in plasticity in the bands because of different resistance to the collapse in different crystallographic directions; The γ-ε-α′phase transformations may take place inside and outside the bands, and these martensitic phases currently nucleate at intersections either between the twins and deformation bands or between the twins and ε-sheet. Investigation by EBSD shows that recrystallization can occur in the bands with a grain size of an average of 0.2μm in diameter. These nano-grains are proposed to attribute to the results of either dynamic or static recrystallization, which can be described by the rotational recrystallization mechanism. Calculation and analysis indicate that the strain rate inside the shear band can reach 2.50×10^6 s^-1, which is higher, by two or three orders of magnitude, than that exerted dynamically on the specimen tested. 展开更多
关键词 High-strain rate deformation Adiabatic shear band Electron backscatter diffraction (EBSD) RECRYSTALLIZATION Fe-Cr-Ni single crystal
下载PDF
Biomimetic porous silicon oxycarbide ceramics with improved specific strength and efficient thermal insulation
2
作者 Zhuoqing Zhang Jinghan Li +5 位作者 Lei Cao Yu Shi huajie yang Rui yang Fan Xie Xing Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第1期185-193,共9页
Considering the challenge of aerodynamic heating,the development of high-performance insulating ce-ramic materials with lightweight and low thermal conductivity is crucially important for aerospace vehi-cles to achiev... Considering the challenge of aerodynamic heating,the development of high-performance insulating ce-ramic materials with lightweight and low thermal conductivity is crucially important for aerospace vehi-cles to achieve flight at high speed for a long time.In this work,macro-porous silicon oxycarbide(SiOC)ceramics with directional pores(DP-SiOC)(mean pore size of 88.1μm)were prepared using polysiloxane precursors via freeze casting and photocrosslinking,followed by pyrolysis.The DP-SiOC samples were lightweight(density∼0.135 g cm^(-3))with a porosity of 90.4%,which showed good shapability through the molding of polysiloxane precursors.The DP-SiOC samples also exhibited an ultra-low thermal con-ductivity of 0.048 W(m K)^(-1)at room temperature,which can also withstand heat treatment at 1200°C for 1 h.In addition,scaffolds with triply periodic minimal surfaces(TPMS)were fabricated using digital light processing(DLP)printing,which was further filled with polysiloxane precursors for increasing the strength of DP-SiOC.The TPMS scaffolds filled with macro-porous SiOC ceramics(TPMS-DP-SiOC)showed good integration between TPMS and macro-pore structures,which had a porosity∼75%and high specific strength of 9.73×10^(3)N m kg^(-1).The thermal conductivity of TPMS-DP-SiOC samples was 0.255 W(m K)^(-1)at room temperature.The biomimetic TPMS-DP-SiOC ceramics developed in this study are likely used for thermal protection systems. 展开更多
关键词 Thermal insulation Light weight Macro-porous ceramics SIOC
原文传递
Tensile and Isothermal Fatigue Behaviors of Mg-12Gd-3Y-0.5Zr Alloy at High Temperature 被引量:2
3
作者 Xiaoming yang huajie yang +4 位作者 Fan yang Shuming Yin Wei Wang Shouxin Li Qudong Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第6期731-737,共7页
Tensile and isothermal fatigue tests were carried out on an as-rolled Mg-12Gd-3Y-0.5Zr alloy and its heat-treated counterpart at different temperatures. The experimental results show that the ultimate tensile strength... Tensile and isothermal fatigue tests were carried out on an as-rolled Mg-12Gd-3Y-0.5Zr alloy and its heat-treated counterpart at different temperatures. The experimental results show that the ultimate tensile strengths of two alloys decrease very slowly with increasing temperature up to 200℃. The ultimate tensile strength of heat-treated Mg-12Gd-3Y-0.5Zr is slight lower than that of as-rolled counterpart; however, the fatigue strength of heat-treated alloy is higher. The mechanism of fatigue failure was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It shows that cyclic slip combined with environmental effect may be the main crack initiation mechanism. 展开更多
关键词 Mg-12Gd-3Y-0.5Zr Isothermal fatigue Fatigue strength Tensile strength
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部