In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on pa...In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on particle swarm optimization and simulated annealing( PSO-SA) transforms the dependencies between tasks into a directed acyclic graph( DAG) model. The number in each node represents the computation workload of each task and the number on each edge represents the workload produced by the transmission. In order to simulate the environment of task assignment in AMC,mathematical models are developed to describe the dependencies between tasks and the costs of each task are defined. PSO-SA is used to make the decision for task assignment and for minimizing the cost of all devices,which includes the energy consumption and time delay of all devices.PSO-SA also takes the advantage of both particle swarm optimization and simulated annealing by selecting an optimal solution with a certain probability to avoid falling into local optimal solution and to guarantee the convergence speed. The simulation results show that compared with other existing algorithms,the PSO-SA has a smaller cost and the result of PSO-SA can be very close to the optimal solution.展开更多
To satisfy mobile terminals ’( MTs) offloading requirements and reduce MTs’ cost,a joint cloud and wireless resource allocation scheme based on the evolutionary game( JRA-EG) is proposed for overlapping heterogeneou...To satisfy mobile terminals ’( MTs) offloading requirements and reduce MTs’ cost,a joint cloud and wireless resource allocation scheme based on the evolutionary game( JRA-EG) is proposed for overlapping heterogeneous networks in mobile edge computing environments. MTs that have tasks offloading requirements in the same service area form a population. MTs in one population acquire different wireless and computation resources by selecting different service providers( SPs). An evolutionary game is formulated to model the SP selection and resource allocation of the MTs. The cost function of the game consists of energy consumption,time delay and monetary cost. The solutions of evolutionary equilibrium( EE) include the centralized algorithm based on replicator dynamics and the distributed algorithm based on Q-learning.Simulation results show that both algorithms can converge to the EE rapidly. The differences between them are the convergence speed and trajectory stability. Compared with the existing schemes,the JRA-EG scheme can save more energy and have a smaller time delay when the data size becomes larger. The proposed scheme can schedule the wireless and computation resources reasonably so that the offloading cost is reduced efficiently.展开更多
An indoor positioning system( IPS) is designed to realize positioning and tracking of mobile targets,by taking advantages of both the visible light communication( VLC) and inertial measurement unit( IMU). The platform...An indoor positioning system( IPS) is designed to realize positioning and tracking of mobile targets,by taking advantages of both the visible light communication( VLC) and inertial measurement unit( IMU). The platform of the IPS is designed,which consists of the light-emitting diode( LED)based transmitter,the receiver and the positioning server. To reduce the impact caused by measurement errors,both inertial sensing data and the received signal strength( RSS) from the VLC are calibrated. Then,a practical propagation model is established to obtain the distance between the transmitter and the receiver from the RSS measurements. Furthermore,a hybrid positioning algorithm is proposed by using the adaptive Kalman filter( AKF) and the weighted least squares( WLS)trilateration to estimate the positions of the mobile targets.Experimental results show that the developed IPS using the proposed hybrid positioning algorithm can extend the localization area of VLC,mitigate the IMU drifts and improve the positioning accuracy of mobile targets.展开更多
基金The National Natural Science Foundation of China(No.61741102,61471164,61601122)the Fundamental Research Funds for the Central Universities(No.SJLX_160040)
文摘In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on particle swarm optimization and simulated annealing( PSO-SA) transforms the dependencies between tasks into a directed acyclic graph( DAG) model. The number in each node represents the computation workload of each task and the number on each edge represents the workload produced by the transmission. In order to simulate the environment of task assignment in AMC,mathematical models are developed to describe the dependencies between tasks and the costs of each task are defined. PSO-SA is used to make the decision for task assignment and for minimizing the cost of all devices,which includes the energy consumption and time delay of all devices.PSO-SA also takes the advantage of both particle swarm optimization and simulated annealing by selecting an optimal solution with a certain probability to avoid falling into local optimal solution and to guarantee the convergence speed. The simulation results show that compared with other existing algorithms,the PSO-SA has a smaller cost and the result of PSO-SA can be very close to the optimal solution.
基金The National Natural Science Foundation of China(No.61741102,61471164)
文摘To satisfy mobile terminals ’( MTs) offloading requirements and reduce MTs’ cost,a joint cloud and wireless resource allocation scheme based on the evolutionary game( JRA-EG) is proposed for overlapping heterogeneous networks in mobile edge computing environments. MTs that have tasks offloading requirements in the same service area form a population. MTs in one population acquire different wireless and computation resources by selecting different service providers( SPs). An evolutionary game is formulated to model the SP selection and resource allocation of the MTs. The cost function of the game consists of energy consumption,time delay and monetary cost. The solutions of evolutionary equilibrium( EE) include the centralized algorithm based on replicator dynamics and the distributed algorithm based on Q-learning.Simulation results show that both algorithms can converge to the EE rapidly. The differences between them are the convergence speed and trajectory stability. Compared with the existing schemes,the JRA-EG scheme can save more energy and have a smaller time delay when the data size becomes larger. The proposed scheme can schedule the wireless and computation resources reasonably so that the offloading cost is reduced efficiently.
基金The National Natural Science Foundation of China(No.61741102,61471164,61601122)the Fundamental Research Funds for the Central Universities(No.SJLX_160040)
文摘An indoor positioning system( IPS) is designed to realize positioning and tracking of mobile targets,by taking advantages of both the visible light communication( VLC) and inertial measurement unit( IMU). The platform of the IPS is designed,which consists of the light-emitting diode( LED)based transmitter,the receiver and the positioning server. To reduce the impact caused by measurement errors,both inertial sensing data and the received signal strength( RSS) from the VLC are calibrated. Then,a practical propagation model is established to obtain the distance between the transmitter and the receiver from the RSS measurements. Furthermore,a hybrid positioning algorithm is proposed by using the adaptive Kalman filter( AKF) and the weighted least squares( WLS)trilateration to estimate the positions of the mobile targets.Experimental results show that the developed IPS using the proposed hybrid positioning algorithm can extend the localization area of VLC,mitigate the IMU drifts and improve the positioning accuracy of mobile targets.