社交网络链路预测旨在根据已知的网络信息预测未来的链接关系,在推荐系统和合著网络中具有重要作用.然而,现有链路预测算法往往忽视社交网络的多元演化特点,训练时间复杂度较高,限制其执行效率.针对上述问题,文中提出基于多演化特征的...社交网络链路预测旨在根据已知的网络信息预测未来的链接关系,在推荐系统和合著网络中具有重要作用.然而,现有链路预测算法往往忽视社交网络的多元演化特点,训练时间复杂度较高,限制其执行效率.针对上述问题,文中提出基于多演化特征的社交网络链路预测算法(Multi-evolutionary Features Based Link Prediction Algorithm for Social Network,MEF-LP).首先,设计一种简单高效的时间极限学习机模型,利用门控网络和极限学习机自编码器传递与聚合社交网络快照序列的时间信息.然后,构建多个深度极限学习机,对时间特征进行多角度映射,挖掘社交网络不同的演化特征,并最终融合成综合演化特征.最后,使用基于极限学习机的分类器完成链路预测.在6个真实社交网络上的实验表明,MEF-LP能合理学习社交网络的多演化特征,并获得较优的预测性能.展开更多
In this paper, a prefetching technique is proposed to solve the performance problem caused by remote data access delay. In the technique, the map tasks which will cause the delay are predicted first and then the input...In this paper, a prefetching technique is proposed to solve the performance problem caused by remote data access delay. In the technique, the map tasks which will cause the delay are predicted first and then the input data of these tasks will be preloaded before the tasks are scheduled. During the execution, the input data can be read from local nodes. Therefore, the delay can be hidden. The technique has been implemented in Hadoop-0. 20.1. The experiment results have shown that the technique reduces map tasks causing delay, and improves the performance of Hadoop MapRe- duce by 20%.展开更多
文摘社交网络链路预测旨在根据已知的网络信息预测未来的链接关系,在推荐系统和合著网络中具有重要作用.然而,现有链路预测算法往往忽视社交网络的多元演化特点,训练时间复杂度较高,限制其执行效率.针对上述问题,文中提出基于多演化特征的社交网络链路预测算法(Multi-evolutionary Features Based Link Prediction Algorithm for Social Network,MEF-LP).首先,设计一种简单高效的时间极限学习机模型,利用门控网络和极限学习机自编码器传递与聚合社交网络快照序列的时间信息.然后,构建多个深度极限学习机,对时间特征进行多角度映射,挖掘社交网络不同的演化特征,并最终融合成综合演化特征.最后,使用基于极限学习机的分类器完成链路预测.在6个真实社交网络上的实验表明,MEF-LP能合理学习社交网络的多演化特征,并获得较优的预测性能.
文摘In this paper, a prefetching technique is proposed to solve the performance problem caused by remote data access delay. In the technique, the map tasks which will cause the delay are predicted first and then the input data of these tasks will be preloaded before the tasks are scheduled. During the execution, the input data can be read from local nodes. Therefore, the delay can be hidden. The technique has been implemented in Hadoop-0. 20.1. The experiment results have shown that the technique reduces map tasks causing delay, and improves the performance of Hadoop MapRe- duce by 20%.