Organic light-emitting transistors(OLETs)are miniaturized electroluminescent devices,and they simultaneously integrate the dual functionality of switching in organicfield-effect transistors and emission in organic ligh...Organic light-emitting transistors(OLETs)are miniaturized electroluminescent devices,and they simultaneously integrate the dual functionality of switching in organicfield-effect transistors and emission in organic light-emitting diodes,which have recently aroused interest from scientists for the next-generation of display applications[1–3].Notably,white organic light-emitting transistors(WOLETs)have gained much attention for their potential applications in sensors,switches,and light sources,including indoor lighting,street lighting andflood lighting[4].Moreover,the Commission Internationale de l’Elcairage(CIE)standard coordinates are precisely defined as(0.33,0.33)of pure white emission,providing a universal reference for evaluating white light accuracy and consistency across lighting and display technologies[5].To meet the requirements of high color-purity,most of the reported white emissive materials and WOLETs have been achieved by rational combination of red,green,blue for three primary colors or blue and orange for two complementary colors emitters[6],such as doping an emitter into an appropriate host and employing the multi-component active layers with a stacked configuration[7].Although a minority of doped electroluminescent devices have the capability of good exciton utilization to realize the white emission,the multi-component active layer is inherently prone to phase separation,which is harmful for the optoelectronic devices[4].Therefore.展开更多
High-efficiency electroluminescent devices featuring simplified architecture have received considerable attention due to significant advantages in construction procedures and commercialized applications.However,there ...High-efficiency electroluminescent devices featuring simplified architecture have received considerable attention due to significant advantages in construction procedures and commercialized applications.However,there still remains a critical challenge with regard to the lack of organic semiconductors that simultaneously possess high luminescent efficiency and balanced carrier-transporting abilities.Herein,we design a thermally activated delayed fluorescence(TADF)emitter 4-(9,9-dimethyl-9,10-dihydroacridine)-4′-triphenylphosphineoxide-benzophenone(DMAC-BPTPO)by incorporating triphenylphosphine oxide into the donor–acceptor skeleton.The accessional electrontransporting moiety,rod-like dimer,and horizontally packing model synergistically enable DMAC-BP-TPO which possesses an excellent photoluminescence quantum yield of nearly 90%with a reverse intersystem crossing rate constant of 2.0×106 s−1,horizontal dipole ratio of 89%,and a balanced electron and hole mobilities with a small constrast ratio of 1.08.Eventually,simplified electroluminescent devices including organic lightemitting diodes(OLEDs)and organic light-emitting transistors(OLETs)incorporating DMAC-BP-TPO-based nondoped film are demonstrated due to their superior integrated optoelectronic properties along with preferable horizontal dipole orientation.A record-high external quantum efficiency value of 21.7%and 4.4%are finally achieved in the simplified nondoped OLED and OLET devices,which are among the highest values in the related research fields.This work provides a new avenue to develop a high-efficiency bipolar TADF emitter to advance the simplified electroluminescent devices.展开更多
Semiconducting two-dimensional conjugated polymers(2DCPs)with strong fluorescence emission have great potential for various optoelectronic applications.However,it is enormously challenging to achieve this goal due to ...Semiconducting two-dimensional conjugated polymers(2DCPs)with strong fluorescence emission have great potential for various optoelectronic applications.However,it is enormously challenging to achieve this goal due to the significant compact interlayerπ-πstacking-induced quenching effect in these systems.In this work,we found that highly fluorescent semiconducting 2DCPs can be prepared through an effective side-chain engineering approach in which interlayer spacers are introduced to reduce the fluorescence quenching effect.The obtained two truxene-based 2DCP films that,along with-C6H13 and-C_(12)H_(25)alkyl side chains as interlayer spacers both demonstrate superior fluorescence properties with a high photoluminescence quantum yield of 5.6%and 14.6%,respectively.These are among the highest values currently reported for 2DCP films.Moreover,an ultralong isotropic quasi-twodimensional exciton diffusion length constrained in the plane with its highest value approaching 110 nm was revealed by the transient photoluminescence microscopy technique,suggesting that theπ-conjugated structure in these truxene-based 2DCP films has effectively been extended.This work can enable a broad exploration of highly fluorescent semiconducting 2DCP films for more deeply fundamental properties and optoelectronic device applications.展开更多
Organic single crystals(OSCs)offer a unique combination of both individual and collective properties of the employed molecules,but it remains highly challenging to achieve OSCs with both high mobilities and strong flu...Organic single crystals(OSCs)offer a unique combination of both individual and collective properties of the employed molecules,but it remains highly challenging to achieve OSCs with both high mobilities and strong fluorescence emissions for their potential applications in multifunctional optoelectronics.Herein,we demonstrate the design and synthesis of two novel triphenylamine-functionalized thienoacenes-based organic semiconductors,4,8-distriphenylamineethynylbenzo[1,2-b:4,5-b′]dithiophene(4,8-DTEBDT)and 2,6-distriphenylamineethynylbenzo[1,2-b:4,5-b′]dithiophene(2,6-DTEBDT),with high-mobility and strong fluorescence emission.The two compounds show the maximum mobilities up to 0.25 and 0.06 cm^(2) V^(-1) s^(-1),the photoluminescence quantum yields(PLQYs)of 51% and 45%,and the small binding energies down to 55.13 and 58.79 meV.The excellent electrical and optical properties ensured the application of 4,8-DTEBDT and 2,6-DTEBDT single crystals in ultrasensitive UV phototransistors,achieving high photoresponsivity of 9.60×105 and 6.43×10^(4) AW^(-1),and detectivity exceeding 5.68×10^(17) and 2.99×10^(16) Jones.展开更多
Organic light-mitting transistors(OLETs)integrate the functions of light-emitting diodes and field-effect transistors into a unique device,opening a new door for optoelectronics.However,there is still a challenge due ...Organic light-mitting transistors(OLETs)integrate the functions of light-emitting diodes and field-effect transistors into a unique device,opening a new door for optoelectronics.However,there is still a challenge due to the absence of high quality organic semiconductors for OLETs.Herein,we reported a novel molecule 2,6-di(anthracen-2-yl)naphthalene(2,6-DAN),which exhibited mobility of up to 19 cm2:V'-s'and an absolute fluorescence quantum yield of 37.09%,which are good values for organic semiconductors.Moreover,OLETs based on 2,6-DAN single crystals showed bright yellowish-green emission and well-balanced ambipolar charge transport.The excellent ratio of hole to electron mobilty can reach up to 0.86,which is superior to most single component OL ETs in typical device configurations reported so far.展开更多
Conjugated polymers have received considerable attentions over the past years due to their large-area potential applications via low-cost solution processing. Improving crystallinity of conjugated polymer molecules in...Conjugated polymers have received considerable attentions over the past years due to their large-area potential applications via low-cost solution processing. Improving crystallinity of conjugated polymer molecules in solution-processed thin films is crucial for their efficient charge transport and thus high performance optoelectronic devices. Herein, with diketopyrrolopyrrole-quaterthiophene (PDQT) copo/ymer as an example, it is found that by simply reducing the solution concentration for spincoating meanwhile with the assistance of post-annealing, significantly enhanced film crystallinity with formation of typical single crystalline domains is obtained, which benefits from the enough space for better molecular assembly especially at the semiconductor/dielectric interface. High performance polymer transistors and phototransistors were finally constructed based on the optimal lowconcentration (2 mg/mL) spin-coated PDQT films (~12 nm), which giving a high charge carrier mobility of 2.28 cm2 V-1 s-1 and a photoresponse on/off ratio of 2.1 ×107 at VG = 0 V under white light irradiation of 6mW/cm2. The results suggest that the bright future of PDQT crystalline films for large-area flexible integrated optoelectronic devices and the application of effective low-concentration processing approach in solution-processed organic electronics with reduced material waste.展开更多
Axially coordinated metal-porphyrin-functionalized multi-walled carbon nanotube (MWCNT) nanohybrids were prepared via two different synthetic approaches (a one-pot 1,3-dipolar cycloaddition reaction and a stepwise ...Axially coordinated metal-porphyrin-functionalized multi-walled carbon nanotube (MWCNT) nanohybrids were prepared via two different synthetic approaches (a one-pot 1,3-dipolar cycloaddition reaction and a stepwise approach that involved 1,3-dipolar cycloaddition followed by nucleophilic substitution), and characterized through spectroscopic techniques. Attachment of the tin porphyrins to the surface of the MWCNTs significantly improves their solubility and ease of processing. These axially coordinated (5,10,15,20-tetraphenylporphyrinato)tin(Ⅳ) (SnTPP)- MWCNTs exhibit significant fluorescence quenching. The third-order nonlinear optical properties of the resultant nanohybrids were studied by using the Z-scan technique at 532 nm with both nanosecond and picosecond laser pulses. The results show that the nanohybrids exhibit significant reverse saturable absorption or saturable absorption when nanosecond or picosecond pulses, respectively, are employed. Improvement in the nanosecond regime nonlinear absorption is observed on proceeding to the nanohybrids and is ascribed to a combination of the outstanding properties of MWCNTs and the chemically attached metal-porphyrins.展开更多
Organic phototransistors based on high-quality 2,8-dichloro-5,11-dihexyl-indolo[3,2-b]carbazo(CHICZ)single crystals show the highest photoresponsivity of 3×10^3 A W^-1, photosensitivity of 2×10^4 and the det...Organic phototransistors based on high-quality 2,8-dichloro-5,11-dihexyl-indolo[3,2-b]carbazo(CHICZ)single crystals show the highest photoresponsivity of 3×10^3 A W^-1, photosensitivity of 2×10^4 and the detectivity can achieve 8.4×10^14 Jones. We also discovered good linear dependence of log(photosensitivity) versus the wavelength when the devices were illuminated with a series of sameintensity but different-wavelength lights. The organic phototransistors based on CHICZ single crystal have potential applications in wavelength-detection.展开更多
Conjugated polymers with well-balanced ambipolar charge transport is essential for organic circuits at low cost and large area with simplified fabrication techniques.Aiming at this point,herein,a novel asymmetric thio...Conjugated polymers with well-balanced ambipolar charge transport is essential for organic circuits at low cost and large area with simplified fabrication techniques.Aiming at this point,herein,a novel asymmetric thiophene/pyridine-flanked diketopyrrolopyrrole-based copolymer(PPyTDPP-2FBT)is designed and synthesized.Due to the effect of incorporating F atoms on molecular energy alignment and conjugation conformation,the PPyTDPP-2FBT copolymer exhibits typical V-shaped ambipolar field-effect transfer characteristics with well-balanced hole and electron mobilities of 0.64 and 0.46 cm^(2)V^(−1)s^(−1),respectively.Furthermore,organic digital and analog circuits such as inverters and frequency doublers are successfully constructed based on solution-processed films of the PPyTDPP-2FBT copolymers which show a typical circuit operating mode with a high gain of 133 due to the well-balanced electrical properties.In addition,PPyTDPP-2FBT-based devices also demonstrate good stability and batch repeatability,suggesting their great potential applications in organic integrated electronic circuits.展开更多
In recent years, organic electronic devices have become more and more popular, such as organic solar cell (OSC) [1-4], organic light emitting diode (OLED) [5-7] and organic thin film transistor (OTFT) [8-11] by ...In recent years, organic electronic devices have become more and more popular, such as organic solar cell (OSC) [1-4], organic light emitting diode (OLED) [5-7] and organic thin film transistor (OTFT) [8-11] by virtue of their light weight, easy-processing and flexibility.展开更多
Conjugated polymers attracted much attention in the past few decades due to their wide applications in various optoelectronic devices and circuits. The charge transport process in conjugated polymers mainly occurs in ...Conjugated polymers attracted much attention in the past few decades due to their wide applications in various optoelectronic devices and circuits. The charge transport process in conjugated polymers mainly occurs in the intrachain and interchain parts, where the interchain charge transport is generally slower than intrachain transport and may slow down the whole charge transport properties. Aiming at this issue, herein we employ semiconducting single-walled carbon nanotubes(s-SWNTs) as efficient charge-transporting jointing channels between conjugated polymer chains for improving the charge transport performance. Taking the typical conjugated polymer, ploy-N-alkyl-diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene(PDPP-TT) as an example, polymer thin film transistors(PTFTs) based on the optimized blended films of PDPP-TT/s-SWNTs exhibit an obviously increasing device performance compared with the devices based on pure PDPP-TT films, with the hole and electron mobility increased from 2.32 to 12.32 cm^2 V^-1 s^-1 and from 2.02 to 5.77 cm^2 V^-1 s^-1, respectively. This result suggests the importance of forming continuous conducting channels in conjugated polymer thin films, which can also be extended to other polymeric electronic and optoelectronic devices to promote their potential applications in large-area, low-cost and high performance polymeric electronic devices and circuits.展开更多
The nucleation and growth mechanism and polymorph-property correlations in the molecular cocrystal field are widely sought but currently remain unclear. Herein, a new wire-like morphology of phenazine(Phz)-chloranilic...The nucleation and growth mechanism and polymorph-property correlations in the molecular cocrystal field are widely sought but currently remain unclear. Herein, a new wire-like morphology of phenazine(Phz)-chloranilic acid(H2ca) cocrystal(PHC) is demonstrated for the first time, and the self-assembly of Phz and H2ca is controlled to selectively prepare kinetically stable wires and thermodynamically stable plates. Specifically, low precursor concentration is beneficial for one-dimensional(1D) self-assembly along the [010] crystallographic direction, while only supersaturation can trigger 2D self-assembly along the [100] and [010] directions, respectively. This is understandable in terms of the(020) face showing the largest attachment energy(Eatt) and the(002) face possessing the smallest surface energy(Esurf). Moreover, anisotropic Raman spectra related to the mode symmetry and atomic displacements in two types of PHCs are revealed, and the same Raman-active vibrational bands of PHC wire and plate show different polarization responses, which is intrinsically ascribed to their different molecular orientations.Overall, this is the first case that morphologies of cocrystal are precisely tuned with comprehensive investigations of their anisotropic vibrational characteristics.展开更多
Memristors proposed by Leon Chua provide a new type of memory device for novel neuromorphic computing applications.However,the approaching of distinct multi‐intermediate states for tunable switching dynamics,the con-...Memristors proposed by Leon Chua provide a new type of memory device for novel neuromorphic computing applications.However,the approaching of distinct multi‐intermediate states for tunable switching dynamics,the con-trolling of conducting filaments(CFs)toward high device repeatability and reproducibility,and the ability for large‐scale preparation devices,remain full of challenges.Here,we show that vertical‐organic‐nanocrystal‐arrays(VONAs)could make a way toward the challenges.The perfect one‐dimensional structure of the VONAs could confine the CFs accurately with fine‐tune resistance states in a broad range of 103 ratios.The availability of large‐area VONAs makes the fabrication of large‐area crossbar memristor arrays facilely,and the analog switching characteristic of the memristors is to effectively imitate different kinds of synaptic plasticity,indicating their great potential in future applications.展开更多
The spinterface formed between ferromagnetic(FM)electrode and organic materials is vital for performance optimization in organic spin valve(OSV).Half-metallic Fe_(3)O_(4)with drastic change in structure,conductivity a...The spinterface formed between ferromagnetic(FM)electrode and organic materials is vital for performance optimization in organic spin valve(OSV).Half-metallic Fe_(3)O_(4)with drastic change in structure,conductivity and magnetic property near Verwey transition can serve as an intrinsic spinterface regulator.However,such modulating effect of Fe_(3)O_(4)in OSV has not been comprehensively investigated,especially below the Verwey transition temperature(Tv).Here,we highlight the important role of Fe_(3)O_(4)electrode in reliable-working and controllable Fe_(3)O_(4)/P3HT/Co polymer spin valves by investigating the magnetoresistance(MR)above and below 7V.In order to distinguish between different contributions to charge transport and related MR responses,the systematic electronic and magnetic characterizations were carried out in full temperature range.Particularly,the first-order metal-insulator transition in Fe_(3)O_(4)has a dramatic effect on the MR enhancement of polymer spin valves at 7V.Moreover,both the conducting mode transformation and MR line shape modulation could be accomplished across 7V.This research renders unique scenario to multimodal storage by external thermodynamic parameters,and further reveals the importance of spin-dependent interfacial modification in polymer spin valves.展开更多
Compact molecular packing with short π-π stacking and large π-overlap in organic semiconductors is desirable for efficient charge transport and high carrier mobility. Thus charge transport anisotropy along differen...Compact molecular packing with short π-π stacking and large π-overlap in organic semiconductors is desirable for efficient charge transport and high carrier mobility. Thus charge transport anisotropy along different directions is commonly observed in organic semiconductors. Interestingly, in this article, we found that comparable charge transport property were achieved based on the single crystals of a bis-fused tetrathiafulvalene derivative (EM-TTP) compound along two interaction directions, that is, the multiple strong S…S intermolecular interactions and the π-π stacking direction, with the measured electrical conductivity and hole mobility of 0.4 S cm-1, 0.94 cm2 V i s 1 and 0.2 S cm-1, 0.65 cm2 V-1 s-1, respectively. This finding provides us a new molecular design concept for developing novel organic semiconductors with isotropic charge transport property through the synergistic effect of multiple intermolecular interactions (such as π-π interactions) and π-π stacking.展开更多
Two-dimensional materials(2DMs)are an important subject in material science that have many interesting physical properties and significant potential applications in various technological areas[1,2].
A novel semiconductor, dihexyl-substituted pentathienoacene(C6-PTA) is designed and synthesized in five steps with the total yield up to 25.2%. The introduction of hexyl chains endow the thin film semiconductor with a...A novel semiconductor, dihexyl-substituted pentathienoacene(C6-PTA) is designed and synthesized in five steps with the total yield up to 25.2%. The introduction of hexyl chains endow the thin film semiconductor with about threefold increase in carrier mobility and one to three orders of magnitude improvement in current on/off ratio. Furthermore, single crystal FETs based on C6-PTA exhibited mobility up to 0.64 cm^2 V^(-1) s^(-1), which is over 50 times higher than the thin film counterpart. The results indicate clearly that C6-PTA is a promising organic semiconductor with high stability.展开更多
The physical and chemical properties of organic semiconductors are closely related to their aggregation structure. Tuning of aggregation structure and electrical property is important for the application in organic el...The physical and chemical properties of organic semiconductors are closely related to their aggregation structure. Tuning of aggregation structure and electrical property is important for the application in organic electronics. In this study, a facile way to tune the aggregation structure and electrical property of 2.6-diphenyl-anthracene(DPA) is realized by using the octadecyltrichlorosilane(OTS) modification layer with different density which is fabricated by controlling reaction temperature and time.Compared with low density OTS, DPA forms larger grain size, less grain boundaries, and better molecular ordering on high density OTS surface. As a result, the charge transporting mobility of DPA film on high density OTS surface is about two orders of magnitude higher than that on low density OTS surface. The tunable aggregation structure and electrical property of DPA demonstrated here would be meaningful for the application of DPA in organic electronics.展开更多
基金supported by the National Natural Science Foundation of China(52233010,52103245,22021002,and 22305252)the CAS Project for Young Scientists in Basic Research(YSBR053)+4 种基金the Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202012)China Postdoctoral Science Foundation(2023M733555)Postdoctoral Fellowship Program of CPSF(GZB20230771)the International Cooperation Program of the Chinese Academy of Sciences(121111KYSB20200004)The authors also acknowledge Dr.Xun Tang(Kyushu University)for the optical discussion and Zhenling Liu(Institute of Chemistry,Chinese Academy of Sciences)for the ESP calculated.
文摘Organic light-emitting transistors(OLETs)are miniaturized electroluminescent devices,and they simultaneously integrate the dual functionality of switching in organicfield-effect transistors and emission in organic light-emitting diodes,which have recently aroused interest from scientists for the next-generation of display applications[1–3].Notably,white organic light-emitting transistors(WOLETs)have gained much attention for their potential applications in sensors,switches,and light sources,including indoor lighting,street lighting andflood lighting[4].Moreover,the Commission Internationale de l’Elcairage(CIE)standard coordinates are precisely defined as(0.33,0.33)of pure white emission,providing a universal reference for evaluating white light accuracy and consistency across lighting and display technologies[5].To meet the requirements of high color-purity,most of the reported white emissive materials and WOLETs have been achieved by rational combination of red,green,blue for three primary colors or blue and orange for two complementary colors emitters[6],such as doping an emitter into an appropriate host and employing the multi-component active layers with a stacked configuration[7].Although a minority of doped electroluminescent devices have the capability of good exciton utilization to realize the white emission,the multi-component active layer is inherently prone to phase separation,which is harmful for the optoelectronic devices[4].Therefore.
基金financial support from the National Natural Science Foundation of China(grant nos.52103220,52273164,and 52233010)the Shandong Provincial Natural Science Foundation(grant nos.ZR2022ZD37 and ZR2023QE078)+4 种基金the Ministry of Science and Technology of China(grant nos.2022YFB3603800 and 2018YFA0703200)the Fundamental Research Funds for the Central Universities(grant no.QNTD20)the Beijing National Laboratory for Molecular Sciences(grant no.BNLMS-CXXM-202012)the Natural Science Foundation of Qingdao(grant no.23-2-1-75-zyyd-jch)the Shandong Provincial Regular Undergraduate University Teacher Visiting and Training Fund.
文摘High-efficiency electroluminescent devices featuring simplified architecture have received considerable attention due to significant advantages in construction procedures and commercialized applications.However,there still remains a critical challenge with regard to the lack of organic semiconductors that simultaneously possess high luminescent efficiency and balanced carrier-transporting abilities.Herein,we design a thermally activated delayed fluorescence(TADF)emitter 4-(9,9-dimethyl-9,10-dihydroacridine)-4′-triphenylphosphineoxide-benzophenone(DMAC-BPTPO)by incorporating triphenylphosphine oxide into the donor–acceptor skeleton.The accessional electrontransporting moiety,rod-like dimer,and horizontally packing model synergistically enable DMAC-BP-TPO which possesses an excellent photoluminescence quantum yield of nearly 90%with a reverse intersystem crossing rate constant of 2.0×106 s−1,horizontal dipole ratio of 89%,and a balanced electron and hole mobilities with a small constrast ratio of 1.08.Eventually,simplified electroluminescent devices including organic lightemitting diodes(OLEDs)and organic light-emitting transistors(OLETs)incorporating DMAC-BP-TPO-based nondoped film are demonstrated due to their superior integrated optoelectronic properties along with preferable horizontal dipole orientation.A record-high external quantum efficiency value of 21.7%and 4.4%are finally achieved in the simplified nondoped OLED and OLET devices,which are among the highest values in the related research fields.This work provides a new avenue to develop a high-efficiency bipolar TADF emitter to advance the simplified electroluminescent devices.
基金supported by the Ministry of Science and Technology of China(2018YFA0703200 and 2022YFB3603800)the National Natural Science Foundation of China(21875259,52233010,51725304,61890943 and 22021002)+4 种基金the Chinese Academy of Sciences Project for Young Scientists in Basic Research(YSBR-053)the Youth Innovation Promotion Association of the Chinese Academy of Sciencesthe National Program for Support of Top-notch Young ProfessionalsBeijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202012)the Key Research Program of the Chinese Academy of Sciences(XDPB13)。
基金supported by the Ministry of Science and Technology of China(grant nos.2018YFA0703200 and 2022YFB3603800)the Natural Science Foundation of China(grant nos.21875259,52233010,51725304,61890943,and 22021002)+3 种基金the CAS Project for Young Scientists in Basic Research(grant no.YSBR-053)the Youth Innovation Promotion Association of the Chinese Academy of Sciences,the National Program for Support of Top-notch Young Professionals,the Beijing National Laboratory for Molecular Sciences(grant no.BNLMS-CXXM-202012)the Key Research Program of the Chinese Academy of Sciences(grant no.XDPB13)K.C.Wong Education Foundation(grant no.GJTD-2020-02).
文摘Semiconducting two-dimensional conjugated polymers(2DCPs)with strong fluorescence emission have great potential for various optoelectronic applications.However,it is enormously challenging to achieve this goal due to the significant compact interlayerπ-πstacking-induced quenching effect in these systems.In this work,we found that highly fluorescent semiconducting 2DCPs can be prepared through an effective side-chain engineering approach in which interlayer spacers are introduced to reduce the fluorescence quenching effect.The obtained two truxene-based 2DCP films that,along with-C6H13 and-C_(12)H_(25)alkyl side chains as interlayer spacers both demonstrate superior fluorescence properties with a high photoluminescence quantum yield of 5.6%and 14.6%,respectively.These are among the highest values currently reported for 2DCP films.Moreover,an ultralong isotropic quasi-twodimensional exciton diffusion length constrained in the plane with its highest value approaching 110 nm was revealed by the transient photoluminescence microscopy technique,suggesting that theπ-conjugated structure in these truxene-based 2DCP films has effectively been extended.This work can enable a broad exploration of highly fluorescent semiconducting 2DCP films for more deeply fundamental properties and optoelectronic device applications.
文摘Organic single crystals(OSCs)offer a unique combination of both individual and collective properties of the employed molecules,but it remains highly challenging to achieve OSCs with both high mobilities and strong fluorescence emissions for their potential applications in multifunctional optoelectronics.Herein,we demonstrate the design and synthesis of two novel triphenylamine-functionalized thienoacenes-based organic semiconductors,4,8-distriphenylamineethynylbenzo[1,2-b:4,5-b′]dithiophene(4,8-DTEBDT)and 2,6-distriphenylamineethynylbenzo[1,2-b:4,5-b′]dithiophene(2,6-DTEBDT),with high-mobility and strong fluorescence emission.The two compounds show the maximum mobilities up to 0.25 and 0.06 cm^(2) V^(-1) s^(-1),the photoluminescence quantum yields(PLQYs)of 51% and 45%,and the small binding energies down to 55.13 and 58.79 meV.The excellent electrical and optical properties ensured the application of 4,8-DTEBDT and 2,6-DTEBDT single crystals in ultrasensitive UV phototransistors,achieving high photoresponsivity of 9.60×105 and 6.43×10^(4) AW^(-1),and detectivity exceeding 5.68×10^(17) and 2.99×10^(16) Jones.
基金the National Key R&D Program of China(Nos.2017YFA0204503 and 2016YFB0401100)the National Natural Science Foundation of China(Nos.91833306,21875158,51633006,51703159,51725304,and 51733004).
文摘Organic light-mitting transistors(OLETs)integrate the functions of light-emitting diodes and field-effect transistors into a unique device,opening a new door for optoelectronics.However,there is still a challenge due to the absence of high quality organic semiconductors for OLETs.Herein,we reported a novel molecule 2,6-di(anthracen-2-yl)naphthalene(2,6-DAN),which exhibited mobility of up to 19 cm2:V'-s'and an absolute fluorescence quantum yield of 37.09%,which are good values for organic semiconductors.Moreover,OLETs based on 2,6-DAN single crystals showed bright yellowish-green emission and well-balanced ambipolar charge transport.The excellent ratio of hole to electron mobilty can reach up to 0.86,which is superior to most single component OL ETs in typical device configurations reported so far.
基金financial support from the Ministry of Science and Technology of China (Nos. 2017YFA0204503, 2016YFB0401100)the National Natural Science Foundation of China (Nos. 51725304, 91433115, 51633006, 51733004)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB12030300)National program for support of top-notch young professionals
文摘Conjugated polymers have received considerable attentions over the past years due to their large-area potential applications via low-cost solution processing. Improving crystallinity of conjugated polymer molecules in solution-processed thin films is crucial for their efficient charge transport and thus high performance optoelectronic devices. Herein, with diketopyrrolopyrrole-quaterthiophene (PDQT) copo/ymer as an example, it is found that by simply reducing the solution concentration for spincoating meanwhile with the assistance of post-annealing, significantly enhanced film crystallinity with formation of typical single crystalline domains is obtained, which benefits from the enough space for better molecular assembly especially at the semiconductor/dielectric interface. High performance polymer transistors and phototransistors were finally constructed based on the optimal lowconcentration (2 mg/mL) spin-coated PDQT films (~12 nm), which giving a high charge carrier mobility of 2.28 cm2 V-1 s-1 and a photoresponse on/off ratio of 2.1 ×107 at VG = 0 V under white light irradiation of 6mW/cm2. The results suggest that the bright future of PDQT crystalline films for large-area flexible integrated optoelectronic devices and the application of effective low-concentration processing approach in solution-processed organic electronics with reduced material waste.
基金Financial support from the National Natural Science Foundation of China (Nos. 51432006, 50925207, and 51172100), the Ministry of Science and Technology of China for the International Science Linkages Program (No. 2011DFG52970), the Ministry of Education of China for the Changjiang Innovation Research Team (No. IRT14R23), the Ministry of Education and the State Administration of Foreign Experts Affairs for the 111 Project (No. B13025), 100 Talents Program of CAS, and Jiangsu Innovation Research Team are gratefully acknowledged. M. G. H., M. P. C., and C. Z. thank the Australian Research Council (ARC) for support.
文摘Axially coordinated metal-porphyrin-functionalized multi-walled carbon nanotube (MWCNT) nanohybrids were prepared via two different synthetic approaches (a one-pot 1,3-dipolar cycloaddition reaction and a stepwise approach that involved 1,3-dipolar cycloaddition followed by nucleophilic substitution), and characterized through spectroscopic techniques. Attachment of the tin porphyrins to the surface of the MWCNTs significantly improves their solubility and ease of processing. These axially coordinated (5,10,15,20-tetraphenylporphyrinato)tin(Ⅳ) (SnTPP)- MWCNTs exhibit significant fluorescence quenching. The third-order nonlinear optical properties of the resultant nanohybrids were studied by using the Z-scan technique at 532 nm with both nanosecond and picosecond laser pulses. The results show that the nanohybrids exhibit significant reverse saturable absorption or saturable absorption when nanosecond or picosecond pulses, respectively, are employed. Improvement in the nanosecond regime nonlinear absorption is observed on proceeding to the nanohybrids and is ascribed to a combination of the outstanding properties of MWCNTs and the chemically attached metal-porphyrins.
基金financial support from the Ministry of Science and Technology of China (2017YFA0204503 and 2016YFB0401100)the National Natural Science Foundation of China (51725304, 51633006, 51703159 and 51733004)the Strategic Priority Research Program (XDB12030300) of the Chinese Academy of Sciences
文摘Organic phototransistors based on high-quality 2,8-dichloro-5,11-dihexyl-indolo[3,2-b]carbazo(CHICZ)single crystals show the highest photoresponsivity of 3×10^3 A W^-1, photosensitivity of 2×10^4 and the detectivity can achieve 8.4×10^14 Jones. We also discovered good linear dependence of log(photosensitivity) versus the wavelength when the devices were illuminated with a series of sameintensity but different-wavelength lights. The organic phototransistors based on CHICZ single crystal have potential applications in wavelength-detection.
基金This work is financially supported by the Ministry of Science and Technology of China(2018YFA0703200,2017YFA0204503)the National Natural Science Foundation of China(91833306,61890943,51725304,22021002)Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202012),the Youth Innovation Promotion Association of the Chinese Academy of Sciences,and the National Program for Support of Top-notch Young Professionals.
文摘Conjugated polymers with well-balanced ambipolar charge transport is essential for organic circuits at low cost and large area with simplified fabrication techniques.Aiming at this point,herein,a novel asymmetric thiophene/pyridine-flanked diketopyrrolopyrrole-based copolymer(PPyTDPP-2FBT)is designed and synthesized.Due to the effect of incorporating F atoms on molecular energy alignment and conjugation conformation,the PPyTDPP-2FBT copolymer exhibits typical V-shaped ambipolar field-effect transfer characteristics with well-balanced hole and electron mobilities of 0.64 and 0.46 cm^(2)V^(−1)s^(−1),respectively.Furthermore,organic digital and analog circuits such as inverters and frequency doublers are successfully constructed based on solution-processed films of the PPyTDPP-2FBT copolymers which show a typical circuit operating mode with a high gain of 133 due to the well-balanced electrical properties.In addition,PPyTDPP-2FBT-based devices also demonstrate good stability and batch repeatability,suggesting their great potential applications in organic integrated electronic circuits.
基金the National Natural Science Foundation of China (21573277, 51633006 and 51503221)the National Key Research and Development Program (2016YFA0200700)+1 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDBSSWSLH031)the Natural Sciences Foundation of Jiangsu Province (BK20150368)
文摘In recent years, organic electronic devices have become more and more popular, such as organic solar cell (OSC) [1-4], organic light emitting diode (OLED) [5-7] and organic thin film transistor (OTFT) [8-11] by virtue of their light weight, easy-processing and flexibility.
基金financial support from the Ministry of Science and Technology of China (2017YFA0204503 and 2016YFB0401100)the National Natural Science Foundation of China (51725304, 51633006, 51703159, 51733004 and 21875259)+1 种基金the Strategic Priority Research Program (XDB12030300)the Chinese Academy of Sciences and the National Program for Support of Top-notch Young Professionals
文摘Conjugated polymers attracted much attention in the past few decades due to their wide applications in various optoelectronic devices and circuits. The charge transport process in conjugated polymers mainly occurs in the intrachain and interchain parts, where the interchain charge transport is generally slower than intrachain transport and may slow down the whole charge transport properties. Aiming at this issue, herein we employ semiconducting single-walled carbon nanotubes(s-SWNTs) as efficient charge-transporting jointing channels between conjugated polymer chains for improving the charge transport performance. Taking the typical conjugated polymer, ploy-N-alkyl-diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene(PDPP-TT) as an example, polymer thin film transistors(PTFTs) based on the optimized blended films of PDPP-TT/s-SWNTs exhibit an obviously increasing device performance compared with the devices based on pure PDPP-TT films, with the hole and electron mobility increased from 2.32 to 12.32 cm^2 V^-1 s^-1 and from 2.02 to 5.77 cm^2 V^-1 s^-1, respectively. This result suggests the importance of forming continuous conducting channels in conjugated polymer thin films, which can also be extended to other polymeric electronic and optoelectronic devices to promote their potential applications in large-area, low-cost and high performance polymeric electronic devices and circuits.
基金supported by the National Natural Science Foundation of China (51303185, 21021091, 51033006, 51222306, 51003107, 61201105, 3591027043, 91222203, 91233205, 21473222 and 21773040)the Ministry of Science and Technology of China (2011CB808400, 2011CB932300, 2013CB933403, 2013CB933500 and 2014CB643600)the Chinese Academy of Sciences (Y42D0A12D1 and Y42D0412D1)。
文摘The nucleation and growth mechanism and polymorph-property correlations in the molecular cocrystal field are widely sought but currently remain unclear. Herein, a new wire-like morphology of phenazine(Phz)-chloranilic acid(H2ca) cocrystal(PHC) is demonstrated for the first time, and the self-assembly of Phz and H2ca is controlled to selectively prepare kinetically stable wires and thermodynamically stable plates. Specifically, low precursor concentration is beneficial for one-dimensional(1D) self-assembly along the [010] crystallographic direction, while only supersaturation can trigger 2D self-assembly along the [100] and [010] directions, respectively. This is understandable in terms of the(020) face showing the largest attachment energy(Eatt) and the(002) face possessing the smallest surface energy(Esurf). Moreover, anisotropic Raman spectra related to the mode symmetry and atomic displacements in two types of PHCs are revealed, and the same Raman-active vibrational bands of PHC wire and plate show different polarization responses, which is intrinsically ascribed to their different molecular orientations.Overall, this is the first case that morphologies of cocrystal are precisely tuned with comprehensive investigations of their anisotropic vibrational characteristics.
基金China Postdoctoral Science Foundation,Grant/Award Number:2019T120183Beijing NOVA Programme,Grant/Award Number:Z131101000413038+3 种基金Chinese Academy of Sciences,Grant/Award Number:XDB12030300Ministry of Science and Technology of China,Grant/Award Number:2017YFA0204503Beijing Local College Innovation Team Improve Plan,Grant/Award Number:IDHT20140512National Natural Science Foundation of China,Grant/Award Numbers:91833306,51903186,21875158。
文摘Memristors proposed by Leon Chua provide a new type of memory device for novel neuromorphic computing applications.However,the approaching of distinct multi‐intermediate states for tunable switching dynamics,the con-trolling of conducting filaments(CFs)toward high device repeatability and reproducibility,and the ability for large‐scale preparation devices,remain full of challenges.Here,we show that vertical‐organic‐nanocrystal‐arrays(VONAs)could make a way toward the challenges.The perfect one‐dimensional structure of the VONAs could confine the CFs accurately with fine‐tune resistance states in a broad range of 103 ratios.The availability of large‐area VONAs makes the fabrication of large‐area crossbar memristor arrays facilely,and the analog switching characteristic of the memristors is to effectively imitate different kinds of synaptic plasticity,indicating their great potential in future applications.
基金the National Key R&D Program(Nos.2016YFB0401100,2017YFA0204503)the National Natural Science Foundation of China(Nos.91833306,21875158,51633006,51703159,51733004).The authors acknowledge the Laboratory of Microfabrication,Institute of Physics,CAS,for their assistance in electrode fabrication。
文摘The spinterface formed between ferromagnetic(FM)electrode and organic materials is vital for performance optimization in organic spin valve(OSV).Half-metallic Fe_(3)O_(4)with drastic change in structure,conductivity and magnetic property near Verwey transition can serve as an intrinsic spinterface regulator.However,such modulating effect of Fe_(3)O_(4)in OSV has not been comprehensively investigated,especially below the Verwey transition temperature(Tv).Here,we highlight the important role of Fe_(3)O_(4)electrode in reliable-working and controllable Fe_(3)O_(4)/P3HT/Co polymer spin valves by investigating the magnetoresistance(MR)above and below 7V.In order to distinguish between different contributions to charge transport and related MR responses,the systematic electronic and magnetic characterizations were carried out in full temperature range.Particularly,the first-order metal-insulator transition in Fe_(3)O_(4)has a dramatic effect on the MR enhancement of polymer spin valves at 7V.Moreover,both the conducting mode transformation and MR line shape modulation could be accomplished across 7V.This research renders unique scenario to multimodal storage by external thermodynamic parameters,and further reveals the importance of spin-dependent interfacial modification in polymer spin valves.
基金supported by the Ministry of Science and Technology of China(2016YFB0401100,2013CB933403,2013CB933504)the National Natural Science Foundation of China(51633006,91433115,51222306,91222203,91233205,21472116)+3 种基金Chinese Academy of Sciences(XDB12030300)Beijing NOVA Programmer(Z131101000413038)Beijing Local College Innovation Team Improve Plan(IDHT20140512)Youth Innovation Promotion Association CAS
文摘Compact molecular packing with short π-π stacking and large π-overlap in organic semiconductors is desirable for efficient charge transport and high carrier mobility. Thus charge transport anisotropy along different directions is commonly observed in organic semiconductors. Interestingly, in this article, we found that comparable charge transport property were achieved based on the single crystals of a bis-fused tetrathiafulvalene derivative (EM-TTP) compound along two interaction directions, that is, the multiple strong S…S intermolecular interactions and the π-π stacking direction, with the measured electrical conductivity and hole mobility of 0.4 S cm-1, 0.94 cm2 V i s 1 and 0.2 S cm-1, 0.65 cm2 V-1 s-1, respectively. This finding provides us a new molecular design concept for developing novel organic semiconductors with isotropic charge transport property through the synergistic effect of multiple intermolecular interactions (such as π-π interactions) and π-π stacking.
基金supported by the National Natural Science Foundation of China (51725304, 51633006, 21875259, 91833306, 61890943 and 21661132006)the Ministry of Science and Technology of China (2017YFA0204503 and 2016YFB0401100)+2 种基金the Strategic Priority Research Program (XDB12000000) of the Chinese Academy of Sciencesthe Youth Innovation Promotion Association of the Chinese Academy of Sciencesthe National Program for Support of Top-notch Young Professionals
文摘Two-dimensional materials(2DMs)are an important subject in material science that have many interesting physical properties and significant potential applications in various technological areas[1,2].
基金financial support from the Ministry of Science and Technology of China (Nos. 2015CB856502, 2016YFB0401100 and 2017YFA0204503)the National Natural Science Foundation of China (Nos. 51733004, 51822308, 51725304, 51633006, 21661132006)+2 种基金the Strategic Priority Research Program (No. XDB12000000)the Youth Innovation Promotion Association of the Chinese Academy of Sciences, Startup Foundation for Doctors of China West Normal University (No. 15E007)Open Foundation of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province (No. CSPC2015-1-1)
文摘A novel semiconductor, dihexyl-substituted pentathienoacene(C6-PTA) is designed and synthesized in five steps with the total yield up to 25.2%. The introduction of hexyl chains endow the thin film semiconductor with about threefold increase in carrier mobility and one to three orders of magnitude improvement in current on/off ratio. Furthermore, single crystal FETs based on C6-PTA exhibited mobility up to 0.64 cm^2 V^(-1) s^(-1), which is over 50 times higher than the thin film counterpart. The results indicate clearly that C6-PTA is a promising organic semiconductor with high stability.
基金supported by the National Natural Science Foundation of China(21573277)Chinese Academy of Sciences
文摘The physical and chemical properties of organic semiconductors are closely related to their aggregation structure. Tuning of aggregation structure and electrical property is important for the application in organic electronics. In this study, a facile way to tune the aggregation structure and electrical property of 2.6-diphenyl-anthracene(DPA) is realized by using the octadecyltrichlorosilane(OTS) modification layer with different density which is fabricated by controlling reaction temperature and time.Compared with low density OTS, DPA forms larger grain size, less grain boundaries, and better molecular ordering on high density OTS surface. As a result, the charge transporting mobility of DPA film on high density OTS surface is about two orders of magnitude higher than that on low density OTS surface. The tunable aggregation structure and electrical property of DPA demonstrated here would be meaningful for the application of DPA in organic electronics.