In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact inte...In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact interface is assumed to be nonslipping,with both perfectly bonded and debonded boundary conditions.The Fourier transform technique is adopted to establish the integral equations in terms of interfacial shear stress,which are solved as a linear algebraic system by approximating the unknown phonon interfacial shear stress via the series expansion of the Chebyshev polynomials.The expressions are explicitly obtained for the phonon interfacial shear stress,internal normal stress,and stress intensity factors(SIFs).Finally,based on numerical calculations,we briefly discuss the effects of the material mismatch,the geometry of the QC film,and the debonded length and location on stresses and SIFs.展开更多
The interface crack problems in the two-dimensional(2D)decagonal quasicrystal(QC)coating are theoretically and numerically investigated with a displacement discontinuity method.The 2D general solution is obtained base...The interface crack problems in the two-dimensional(2D)decagonal quasicrystal(QC)coating are theoretically and numerically investigated with a displacement discontinuity method.The 2D general solution is obtained based on the potential theory.An analogy method is proposed based on the relationship between the general solutions for 2D decagonal and one-dimensional(1D)hexagonal QCs.According to the analogy method,the fundamental solutions of concentrated point phonon displacement discontinuities are obtained on the interface.By using the superposition principle,the hypersingular boundary integral-differential equations in terms of displacement discontinuities are determined for a line interface crack.Further,Green’s functions are found for uniform displacement discontinuities on a line element.The oscillatory singularity near a crack tip is eliminated by adopting the Gaussian distribution to approximate the delta function.The stress intensity factors(SIFs)with ordinary singularity and the energy release rate(ERR)are derived.Finally,a boundary element method is put forward to investigate the effects of different factors on the fracture.展开更多
In this paper, the three-dimensional(3D) interfacial fracture is analyzed in a one-dimensional(1D) hexagonal quasicrystal(QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape i...In this paper, the three-dimensional(3D) interfacial fracture is analyzed in a one-dimensional(1D) hexagonal quasicrystal(QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape is studied by a displacement discontinuity method. Fundamental solutions of interfacial concentrated displacement discontinuities are obtained by the Hankel transform technique, and the corresponding boundary integral-differential equations are constructed with the superposition principle.Green’s functions of constant interfacial displacement discontinuities within a rectangular element are derived, and a boundary element method is proposed for numerical simulation.The singularity of stresses near the crack front is investigated, and the stress intensity factors(SIFs) as well as energy release rates(ERRs) are determined. Finally, relevant influencing factors on the fracture behavior are discussed.展开更多
The dielectric breakdown(DB) model for a penny-shaped crack under a semipermeable boundary condition in a three-dimensional piezoelectric medium is studied.An approximate analytical solution is derived by using the ...The dielectric breakdown(DB) model for a penny-shaped crack under a semipermeable boundary condition in a three-dimensional piezoelectric medium is studied.An approximate analytical solution is derived by using the boundary integral equation with extended displacement discontinuity,and the corresponding boundary element method with double iterative approaches is developed to analyze the semi-permeable crack.The effect of electric boundary conditions on crack faces is discussed on the basis of DB model.By comparing the DB model with the polarization saturation(PS) model for different piezoelectric materials,some interesting phenomena related to the electric yielding zone and local J-integral are observed.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11572289,1171407,11702252,and 11902293)the China Postdoctoral Science Foundation(No.2019M652563)。
文摘In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact interface is assumed to be nonslipping,with both perfectly bonded and debonded boundary conditions.The Fourier transform technique is adopted to establish the integral equations in terms of interfacial shear stress,which are solved as a linear algebraic system by approximating the unknown phonon interfacial shear stress via the series expansion of the Chebyshev polynomials.The expressions are explicitly obtained for the phonon interfacial shear stress,internal normal stress,and stress intensity factors(SIFs).Finally,based on numerical calculations,we briefly discuss the effects of the material mismatch,the geometry of the QC film,and the debonded length and location on stresses and SIFs.
基金the National Natural Science Foundation of China (Nos. 11572289,1171407,11702252,and 11902293)the China Postdoctoral Science Foundation (No. 2019M652563)。
文摘The interface crack problems in the two-dimensional(2D)decagonal quasicrystal(QC)coating are theoretically and numerically investigated with a displacement discontinuity method.The 2D general solution is obtained based on the potential theory.An analogy method is proposed based on the relationship between the general solutions for 2D decagonal and one-dimensional(1D)hexagonal QCs.According to the analogy method,the fundamental solutions of concentrated point phonon displacement discontinuities are obtained on the interface.By using the superposition principle,the hypersingular boundary integral-differential equations in terms of displacement discontinuities are determined for a line interface crack.Further,Green’s functions are found for uniform displacement discontinuities on a line element.The oscillatory singularity near a crack tip is eliminated by adopting the Gaussian distribution to approximate the delta function.The stress intensity factors(SIFs)with ordinary singularity and the energy release rate(ERR)are derived.Finally,a boundary element method is put forward to investigate the effects of different factors on the fracture.
基金Project supported by the National Natural Science Foundation of China (Nos. 11572289, 1171407,11702252, and 11902293)the China Postdoctoral Science Foundation (No. 2019M652563)。
文摘In this paper, the three-dimensional(3D) interfacial fracture is analyzed in a one-dimensional(1D) hexagonal quasicrystal(QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape is studied by a displacement discontinuity method. Fundamental solutions of interfacial concentrated displacement discontinuities are obtained by the Hankel transform technique, and the corresponding boundary integral-differential equations are constructed with the superposition principle.Green’s functions of constant interfacial displacement discontinuities within a rectangular element are derived, and a boundary element method is proposed for numerical simulation.The singularity of stresses near the crack front is investigated, and the stress intensity factors(SIFs) as well as energy release rates(ERRs) are determined. Finally, relevant influencing factors on the fracture behavior are discussed.
基金Project supported by the National Natural Science Foundation of China(Nos.11102186 and 11272290)the Science and Technology Key Project of Henan(No.132102210412)
文摘The dielectric breakdown(DB) model for a penny-shaped crack under a semipermeable boundary condition in a three-dimensional piezoelectric medium is studied.An approximate analytical solution is derived by using the boundary integral equation with extended displacement discontinuity,and the corresponding boundary element method with double iterative approaches is developed to analyze the semi-permeable crack.The effect of electric boundary conditions on crack faces is discussed on the basis of DB model.By comparing the DB model with the polarization saturation(PS) model for different piezoelectric materials,some interesting phenomena related to the electric yielding zone and local J-integral are observed.