Additives in the electrolytes of Li-S batteries aim to increase overall capacity,improve Li ion conductivity,enhance cyclability,and mitigate the shuttle effect,which is one of the major issues of this system.Here,the...Additives in the electrolytes of Li-S batteries aim to increase overall capacity,improve Li ion conductivity,enhance cyclability,and mitigate the shuttle effect,which is one of the major issues of this system.Here,the use of water as an additive in the commonly used electrolyte,1.0 M LiTFSI/1.0%(w/w) LiNO_(3) and a 1:1 mixture of 1,3-dioxolane(DOL) and 1,2-dimethoxyethane(DME) was investigated.We used Co_(2)Mn_(0.5)Al_(0.5)O_(4)(CMA) as an electrocatalyst anchored on an activated carbon(AC) electrode with added sulfur via a melt-diffusion process.The structural analysis of CMA via Rietveld refinement showed interatomic spaces that can promote ionic conductivity,facilitating Li^(+) ion migration.Electrochemical tests determined 1600 ppm as the optimal water concentration,significantly reducing the shuttle effect.Post-mortem XPS analysis focused on the lithium metal anode revealed the formation of Li_(2)O layers in dry samples and LiOH in wet samples.Better capacity was observed in wet samples,which can be attributed to the superior ionic conductivity of LiOH at the electrode/electrolyte interface,surpassing that of Li_(2)O by 12 times.Finally,Operando FTIR experiments provided real-time insights into electrolyte degradation and SEI formation,elucidating the activity mechanisms of water and Li_(2)CO_(3) over the cycles.This work presents results that could aid future advancements in Li-S battery technology,offering possibilities to mitigate its challenges with inexpensive and scalable additives.展开更多
In the Acknowledgments Section,please replace“Shell oil”for“TotalEnergies”.The authors would like to apologise for any inconvenience caused.For the sake of clarity(“Shell oil”should be removed and in boldblack“...In the Acknowledgments Section,please replace“Shell oil”for“TotalEnergies”.The authors would like to apologise for any inconvenience caused.For the sake of clarity(“Shell oil”should be removed and in boldblack“TotalEnergies”inserted),this section should say:The authors would like to thank Moura Batteries for the financial support.展开更多
Solid-state and quasi-solid-state electrolytes have been attracting the scientific community’s attention in the last decade. These electrolytes provide significant advantages, such as the absence of leakage and separ...Solid-state and quasi-solid-state electrolytes have been attracting the scientific community’s attention in the last decade. These electrolytes provide significant advantages, such as the absence of leakage and separators for devices and safety for users. They also allow the assembly of stretchable and bendable supercapacitors. Comparing solid-state to quasi-solid-states, the last provides the most significant energy and power densities due to the better ionic conductivity. Our goal here is to present recent advances on quasisolid-state electrolytes, including gel-polymer electrolytes. We reviewed the most recent literature on quasi-solid-state electrolytes with different solvents for supercapacitors. Organic quasi-solid-state electrolytes need greater attention once they reach an excellent working voltage window greater than 2.5 V.Meanwhile, aqueous-based solid-state electrolytes have a restricted voltage window to less than 2 V. On the other hand, they are easier to handle, provide greater ionic conductivity and capacitance. Recent water-in-salt polymer-electrolytes have shown stability as great as 2 V encouraging further development in aqueous-based quasi-solid-state electrolytes. Moreover, hydrophilic conductive polymers have great commercial appeal for bendable devices. Thus, these electrolytes can be employed in flexible and bendable devices, favoring the improvement of portable electronics and wearable devices(376 references were evaluated and summarized here).展开更多
Supercapacitors(SCs) are high-power energy storage devices with ultra-fast charge/discharge properties.SCs using concentrated aqueous-based electrolytes can work at low temperatures due to their intrinsic properties, ...Supercapacitors(SCs) are high-power energy storage devices with ultra-fast charge/discharge properties.SCs using concentrated aqueous-based electrolytes can work at low temperatures due to their intrinsic properties, such as higher freezing point depression(FPD) and robustness. Besides the traditional organic-and aqueous-based(salt-in-water) electrolytes used in SCs, water-in-salt(WISE) sodium perchlorate electrolytes offer high FPD, non-flammability, and low-toxicity conditions, allowing the fabrication of safer, environmentally friendly, and more robust devices. For the first time, this work reports a comprehensive study regarding WISE system’s charge-storage capabilities and physicochemical properties under low-temperature conditions(T < 0 ℃) using mesoporous carbon-based electrodes. The effect of temperature reduction on the electrolyte viscosity and electrical properties was investigated using different techniques and the in-situ(or operando) Raman spectroscopy under dynamic polarization conditions.The cell voltage, equivalent series resistance, and specific capacitance were investigated as a function of the temperature. The cell voltage(U) increased ~ 50%, while the specific capacitance decreased ~20%when the temperature was reduced from 25 ℃ to -10 ℃. As a result, the maximum specific energy(E = CU^(2)/2) increased ~ 100%. Therefore, low-temperature WISEs are promising candidates to improve the energy-storage characteristics in SCs.展开更多
Electric vehicles(EVs) and the recent pandemic outbreak give cities a new trend to primarily private and shared mobility with low noise and less air pollution.Crucial factors for the widespread of EVs are the electric...Electric vehicles(EVs) and the recent pandemic outbreak give cities a new trend to primarily private and shared mobility with low noise and less air pollution.Crucial factors for the widespread of EVs are the electrical charging infrastructure,driving range,and the reduction of the cost of battery packets.For this reason,there is a massive effort from manufacturers,governments,and the scientific community to reduce battery costs and boost sustainable electrical production and distribution.Battery reuse is an alternative to reduce batteries’ costs and environmental impacts.Second-life batteries can be used in a wide variety of secondary applications.Second-life batteries can be connected with off-grid or on-grid photovoltaic and wind systems,vehicle charging stations,forklifts,and frequency control.The present work aims to analyze the main challenges imposed on the reuse of batteries,the leading technologies for their reuse,and the different types of batteries in terms of their feasibility for second-life use.The main novelty of this work is the discussion about the barriers,opportunities,uncertainties,and technologies for the second life market.Here we summarize the present state of the art in reusing lithium-ion batteries discussing technical and economic feasibility,environmental impacts,and perspectives.The results show five business models that have been proposed in the literature,three types of markets for trading second-life batteries,and the main opportunities and barriers for each actor in the battery supply chain.展开更多
We report here the activated carbon and cobalt hexacyanoferrate composite,which is applied as the electrode materials in symmetric supercapacitors containing a 1.0 M Na_(2)SO_(4) aqueous electrolyte.This novel materia...We report here the activated carbon and cobalt hexacyanoferrate composite,which is applied as the electrode materials in symmetric supercapacitors containing a 1.0 M Na_(2)SO_(4) aqueous electrolyte.This novel material combines high specific surface area and electrochemical stability of activated carbon with the redox properties of cobalt hexacyanoferrate,resulting in maximum specific capacitance of 329 F g^(-1) with large voltage working window of 2.0 V.Electrochemical studies indicated that cobalt hexacyanoferrate introduces important pseudocapacitive properties accounting for the overall charge-storage process,especially when I<0.5 A g^(-1).At lower gravimetric currents(e.g.,0.05 A g^(-1))and up to 1.0 V,the presence of cobalt hexacyanoferrate improves the specific energy for more than 300%.In addition,to better understanding the energy storage process we also provided a careful investigation of the electrode materials under dynamic polarization conditions using the in situ Raman spectroscopy and synchrotron light Xray diffraction techniques.Interesting complementary findings were obtained in these studies.We believe that this novel electrode material is promising for applications regarding the energy-storage process in pseudocapacitors with long lifespan properties.展开更多
Batteries,fuel cells,and supercapacitors are electrochemical devices already on the market and still need a boost in kinetics to match the high energy density demand of applications.Perovskites have attracted the scie...Batteries,fuel cells,and supercapacitors are electrochemical devices already on the market and still need a boost in kinetics to match the high energy density demand of applications.Perovskites have attracted the scientific community's attention in the last decade due to their electrocatalytic activity,chemical and structural properties,tunability,low cost,and scalability.Efforts have been made to understand the active sites and the operational mechanisms in perovskite oxides to shape them as an electrocatalyst in advanced energy devices.Understanding the role of perovskites is the key to engineering more controlled and efficient electrocatalysts via chemical synthesis,and there is still much to do.This review highlights the use of perovskites in different energy storage and conversion systems.The A,B,and A&B doping-site effects are analyzed to understand the opportunities and challenges related to this class of materials.In addition,the synthesis methods and the properties related to the doping site are described and summarized.展开更多
Compressing supercapacitor(SCs)electrode is essential for improving the energy storage characteristics and minimizing ions’distance travel,faradaic reactions,and overall ohmic resistance.Studies comprising the ion dy...Compressing supercapacitor(SCs)electrode is essential for improving the energy storage characteristics and minimizing ions’distance travel,faradaic reactions,and overall ohmic resistance.Studies comprising the ion dynamics in SC electrodes under compression are still rare.So,the ionic dynamics of five aqueous electrolytes in electrodes under compression were studied in this work for tracking electrochemical and structural changes under mechanical stress.A superionic state is formed when the electrode is compressed until the micropores match the dimensions with the electrolyte’s hydrated ion sizes,which increases the capacitance.If excessive compression is applied,the accessible pore regions decrease,and the capacitance drops.Hence,as the studied hydrated ions have different dimensions,the match between ion/pore sizes differs.To the LiOH and NaClO4electrolytes,increasing the pressure from 60 to 120 and 100 PSI raised the capacitance from 13.5 to 35.2 F g^(-1)and 30.9 to 39.0 F g^(-1),respectively.So,the KOH electrolyte with the lowest and LiCl with the biggest combination of hydrated ion size have their point of maximum capacitance(39.5 and 36.7F g^(-1))achieved at 140 and 80 PSI,respectively.To LiCl and KCl electrolytes,overcompression causes a drop in capacitance higher than 23%.展开更多
In situ and operando infrared spectroscopies are powerful techniques to support the design of novel materials for batteries and the development of new battery systems.These techniques can support the study of batterie...In situ and operando infrared spectroscopies are powerful techniques to support the design of novel materials for batteries and the development of new battery systems.These techniques can support the study of batteries by identifying the formation of new species and monitoring electrochemical energy stability.However,few works have employed these techniques,which can be used to investigate various materials,including systems beyond lithium-ion technology,in the research of batteries.Therefore,this review presents a comprehensive overview focusing on the main contributions of in situ and operando infrared spectroscopy for lithium-ion batteries(LIBs)and other battery systems.These techniques can successfully identify the formation of species during the electrolyte reduction,electrode degradation,and the formation of the solid-electrolyte interphase(SEI)layer.From these outcomes,it is possible to conclude that this characterization approach should be employed as a protocol to overcome remaining issues in batteries,consequently supporting battery research.This review aims to be a guide on how infrared spectroscopy can contribute to monitoring battery systems and to lead researchers interested in applying this technique.展开更多
Raman probing of carbon electrode and electrolyte under dynamic conditions is performed here using different aqueous electrolytes to elucidate the fundamental events occurring in electrochemical supercapacitor during ...Raman probing of carbon electrode and electrolyte under dynamic conditions is performed here using different aqueous electrolytes to elucidate the fundamental events occurring in electrochemical supercapacitor during charge–discharge processes.The areal capacitance ranges from 1.54 to 2.31μF cm^(-2)μm and it is determined using different techniques.These findings indicate that the Helmholtz capacitance governs the overall charge-storage process instead of the space charge(quantum)capacitance commonly verified for HOPG electrodes in the range of~3 to 7μF cm^(-2).Molecular dynamics simulations are employed to elucidate the origin of the reversible Raman spectral changes during the charge–discharge processes.A correlation is verified between the reversible Raman shift and the surface excesses of the different ionic species.A theoretical framework is presented to relate the effect of the applied potential on the Raman shift and its correlation with the surface ionic charge.It is proposed that the Raman shift is governed by the interaction of solvated cations with graphite promoted by polarization conditions.It is the first time that a comparative study on different aqueous electrolyte p H and cation ion size has been performed tracking the Raman spectra change under dynamic polarization conditions and contrasting with comprehensive electrochemistry and dynamic molecular simulations studies.This study shines lights onto the charge-storage mechanism with evidence of Kohn anomaly reduction in the carbon electrode during the reversible adsorption/desorption and insertion/extraction of ionic species.展开更多
We discuss here essential aspects of the experimental supercapacitors characterization by a series of well-known electrochemical methods.We are motivated by a considerable number of publications that misreport procedu...We discuss here essential aspects of the experimental supercapacitors characterization by a series of well-known electrochemical methods.We are motivated by a considerable number of publications that misreport procedures and results.Authors often conceal or neglect essential information about the electrochemical analytical apparatus used and its configuration.The lack of such information may lead researchers,especially inexperienced ones,to misunderstand the procedures and results.Eventually,the misled electrochemical equipment configuration favors misinterpretation of data and low reproducibility rates.This paper aims to highlight these issues and clarify them.We explain fundamental concepts of some electrochemical analytical methods,such as cyclic voltammetry,galvanostatic charge-discharge,single potential step chronoamperometry,and electrochemical impedance spectroscopy,focusing on the supercapacitor field.Distinct configurations of electrical parameters are presented and discussed to highlight the effects of incorrect setup and uncover misleading results.We discuss how the electrochemical setup and data analyses matter in reliable data results for the supercapacitor.展开更多
Electrical double-layer capacitors(EDLCs)consist of energy storage devices that present high-power and moderate energy density.The electrolyte and electrode physicochemical properties are crucial for improving their o...Electrical double-layer capacitors(EDLCs)consist of energy storage devices that present high-power and moderate energy density.The electrolyte and electrode physicochemical properties are crucial for improving their overall energy storage capabilities.Therefore,the stability of the EDLCs’materials is the primary focus of this study.Since energy storage depends on the specific capacitance,and also on the square of the maximum capacitive cell voltage(UMCV).Thus,electrodes with high specific surface area(SSA)and electrolytes with excellent electrochemical stability are commonly reported in the literature.Aqueous electrolytes are safer and green devices compared to other organic-based solutions.On the other hand,their UMCVis reduced compared to other electrolytes(e.g.,organic-based and ionic liquids).In this sense,spanning the UMCVfor aqueous-based electrolytes is a’hot topic’research.Unfortunately,the lack of protocols to establish reliable UMCVvalues has culminated in the publishing of several conflicting results.Herein,we confirm that multiwalled carbon nanotubes(MWCNTs)housed in cells degrade and produce CO_(2) under abusive polarisation conditions.It is probed by employing electrochemical techniques,in-situ FTIR and in-situ Raman spectroscopies.From these considerations,the current study uses spectro-electrochemical techniques to support the correct determination of the electrode and electrolyte stability conditions as a function of the operating electrochemical parameters.展开更多
基金the financial support from the Brazilian funding agencies FAPESP. (2024/01031-1, 2022/022220, 2020/04281-8, 21/14442-1, 17/11986-5)support from FAPESP through the research project Pi (2022/02901-4)+2 种基金CAPES (1740195)CNPq through the research grant (313672/2021-0)support Shell and the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R & D levy regulation。
文摘Additives in the electrolytes of Li-S batteries aim to increase overall capacity,improve Li ion conductivity,enhance cyclability,and mitigate the shuttle effect,which is one of the major issues of this system.Here,the use of water as an additive in the commonly used electrolyte,1.0 M LiTFSI/1.0%(w/w) LiNO_(3) and a 1:1 mixture of 1,3-dioxolane(DOL) and 1,2-dimethoxyethane(DME) was investigated.We used Co_(2)Mn_(0.5)Al_(0.5)O_(4)(CMA) as an electrocatalyst anchored on an activated carbon(AC) electrode with added sulfur via a melt-diffusion process.The structural analysis of CMA via Rietveld refinement showed interatomic spaces that can promote ionic conductivity,facilitating Li^(+) ion migration.Electrochemical tests determined 1600 ppm as the optimal water concentration,significantly reducing the shuttle effect.Post-mortem XPS analysis focused on the lithium metal anode revealed the formation of Li_(2)O layers in dry samples and LiOH in wet samples.Better capacity was observed in wet samples,which can be attributed to the superior ionic conductivity of LiOH at the electrode/electrolyte interface,surpassing that of Li_(2)O by 12 times.Finally,Operando FTIR experiments provided real-time insights into electrolyte degradation and SEI formation,elucidating the activity mechanisms of water and Li_(2)CO_(3) over the cycles.This work presents results that could aid future advancements in Li-S battery technology,offering possibilities to mitigate its challenges with inexpensive and scalable additives.
文摘In the Acknowledgments Section,please replace“Shell oil”for“TotalEnergies”.The authors would like to apologise for any inconvenience caused.For the sake of clarity(“Shell oil”should be removed and in boldblack“TotalEnergies”inserted),this section should say:The authors would like to thank Moura Batteries for the financial support.
基金the funding agencies FAPESP(2014/02163-7,2017/11958-1,2020/14968-0)and CNPq(PQ-2 grant:Process 131234/2020-0&310544/2019-0)the funding from Shell and the importance of the support provided by the ANP(Brazil’s National Oil,Natural Gas,and Biofuels Agency)by the R&D levy regulation。
文摘Solid-state and quasi-solid-state electrolytes have been attracting the scientific community’s attention in the last decade. These electrolytes provide significant advantages, such as the absence of leakage and separators for devices and safety for users. They also allow the assembly of stretchable and bendable supercapacitors. Comparing solid-state to quasi-solid-states, the last provides the most significant energy and power densities due to the better ionic conductivity. Our goal here is to present recent advances on quasisolid-state electrolytes, including gel-polymer electrolytes. We reviewed the most recent literature on quasi-solid-state electrolytes with different solvents for supercapacitors. Organic quasi-solid-state electrolytes need greater attention once they reach an excellent working voltage window greater than 2.5 V.Meanwhile, aqueous-based solid-state electrolytes have a restricted voltage window to less than 2 V. On the other hand, they are easier to handle, provide greater ionic conductivity and capacitance. Recent water-in-salt polymer-electrolytes have shown stability as great as 2 V encouraging further development in aqueous-based quasi-solid-state electrolytes. Moreover, hydrophilic conductive polymers have great commercial appeal for bendable devices. Thus, these electrolytes can be employed in flexible and bendable devices, favoring the improvement of portable electronics and wearable devices(376 references were evaluated and summarized here).
基金the financial support from the Brazilian funding agencies CNPq(310544/2019-0),FAPESP(2014/02163-7&2017/11958-1)FAPEMIG(Financial support for the LMMA/UFVJM Laboratory)and CNPq(PQ-2 grant:Process 301095/2018-3)the support from Shell and the strategic importance of the support given by ANP(Brazil’s National Oil,Natural Gas,and Biofuels Agency)through the R&D levy regulation。
文摘Supercapacitors(SCs) are high-power energy storage devices with ultra-fast charge/discharge properties.SCs using concentrated aqueous-based electrolytes can work at low temperatures due to their intrinsic properties, such as higher freezing point depression(FPD) and robustness. Besides the traditional organic-and aqueous-based(salt-in-water) electrolytes used in SCs, water-in-salt(WISE) sodium perchlorate electrolytes offer high FPD, non-flammability, and low-toxicity conditions, allowing the fabrication of safer, environmentally friendly, and more robust devices. For the first time, this work reports a comprehensive study regarding WISE system’s charge-storage capabilities and physicochemical properties under low-temperature conditions(T < 0 ℃) using mesoporous carbon-based electrodes. The effect of temperature reduction on the electrolyte viscosity and electrical properties was investigated using different techniques and the in-situ(or operando) Raman spectroscopy under dynamic polarization conditions.The cell voltage, equivalent series resistance, and specific capacitance were investigated as a function of the temperature. The cell voltage(U) increased ~ 50%, while the specific capacitance decreased ~20%when the temperature was reduced from 25 ℃ to -10 ℃. As a result, the maximum specific energy(E = CU^(2)/2) increased ~ 100%. Therefore, low-temperature WISEs are promising candidates to improve the energy-storage characteristics in SCs.
基金financial CNPq(159332/2019-2,301486/2016-6)FAPESP(2014/02163-7,2017/11958-1,2018/20756-6)+2 种基金Shell oil company through ANP(Brazil’s National Oil,Natural Gas,and Biofuels Agency) funded part of this researchthe BloRin Project"Blockchain for renewables decentralized management",PO FESR Sicilia 2014/2020-Action 1.1.5-identification code:SI_1_23074 CUP:G79J18000680007 for all the support given to the authorspartly founded by the Bavarian Ministry of Economic Affairs,Regional Development and Energy in the program BayVFP Digitalisierung,grant number DIK0384/02.
文摘Electric vehicles(EVs) and the recent pandemic outbreak give cities a new trend to primarily private and shared mobility with low noise and less air pollution.Crucial factors for the widespread of EVs are the electrical charging infrastructure,driving range,and the reduction of the cost of battery packets.For this reason,there is a massive effort from manufacturers,governments,and the scientific community to reduce battery costs and boost sustainable electrical production and distribution.Battery reuse is an alternative to reduce batteries’ costs and environmental impacts.Second-life batteries can be used in a wide variety of secondary applications.Second-life batteries can be connected with off-grid or on-grid photovoltaic and wind systems,vehicle charging stations,forklifts,and frequency control.The present work aims to analyze the main challenges imposed on the reuse of batteries,the leading technologies for their reuse,and the different types of batteries in terms of their feasibility for second-life use.The main novelty of this work is the discussion about the barriers,opportunities,uncertainties,and technologies for the second life market.Here we summarize the present state of the art in reusing lithium-ion batteries discussing technical and economic feasibility,environmental impacts,and perspectives.The results show five business models that have been proposed in the literature,three types of markets for trading second-life batteries,and the main opportunities and barriers for each actor in the battery supply chain.
基金the financial support from the Brazilian funding agencies CNPq(301486/2016-6)FAPESP(2014/02163-7,2017/11958-1,2018/20756-6)+2 种基金FAPEMIG(Financial support for the LMMA/UFVJM Laboratory)CNPq(PQ-2 grant:Process 301095/2018-3)the support from Shell and the strategic importance of the support given by ANP(Brazil’s National Oil,Natural Gas and Biofuels Agency)through the R&D levy regulation。
文摘We report here the activated carbon and cobalt hexacyanoferrate composite,which is applied as the electrode materials in symmetric supercapacitors containing a 1.0 M Na_(2)SO_(4) aqueous electrolyte.This novel material combines high specific surface area and electrochemical stability of activated carbon with the redox properties of cobalt hexacyanoferrate,resulting in maximum specific capacitance of 329 F g^(-1) with large voltage working window of 2.0 V.Electrochemical studies indicated that cobalt hexacyanoferrate introduces important pseudocapacitive properties accounting for the overall charge-storage process,especially when I<0.5 A g^(-1).At lower gravimetric currents(e.g.,0.05 A g^(-1))and up to 1.0 V,the presence of cobalt hexacyanoferrate improves the specific energy for more than 300%.In addition,to better understanding the energy storage process we also provided a careful investigation of the electrode materials under dynamic polarization conditions using the in situ Raman spectroscopy and synchrotron light Xray diffraction techniques.Interesting complementary findings were obtained in these studies.We believe that this novel electrode material is promising for applications regarding the energy-storage process in pseudocapacitors with long lifespan properties.
基金support from FAPESP (Sao Paulo Research Foundation,Grant Numbers 2014/02163-7,2017/11958-1,2020/14968-0)CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico,301486/2016-6)the support given by ANP (Brazil’s National Oil,Natural Gas and Biofuels Agency)through the R&D levy regulation。
文摘Batteries,fuel cells,and supercapacitors are electrochemical devices already on the market and still need a boost in kinetics to match the high energy density demand of applications.Perovskites have attracted the scientific community's attention in the last decade due to their electrocatalytic activity,chemical and structural properties,tunability,low cost,and scalability.Efforts have been made to understand the active sites and the operational mechanisms in perovskite oxides to shape them as an electrocatalyst in advanced energy devices.Understanding the role of perovskites is the key to engineering more controlled and efficient electrocatalysts via chemical synthesis,and there is still much to do.This review highlights the use of perovskites in different energy storage and conversion systems.The A,B,and A&B doping-site effects are analyzed to understand the opportunities and challenges related to this class of materials.In addition,the synthesis methods and the properties related to the doping site are described and summarized.
基金the financial support from the Brazilian funding agencies CNPq(301486/2016-6)FAPESP(2014/02163-7,2017/11958-1,2018/20756-6)the support from Shell。
文摘Compressing supercapacitor(SCs)electrode is essential for improving the energy storage characteristics and minimizing ions’distance travel,faradaic reactions,and overall ohmic resistance.Studies comprising the ion dynamics in SC electrodes under compression are still rare.So,the ionic dynamics of five aqueous electrolytes in electrodes under compression were studied in this work for tracking electrochemical and structural changes under mechanical stress.A superionic state is formed when the electrode is compressed until the micropores match the dimensions with the electrolyte’s hydrated ion sizes,which increases the capacitance.If excessive compression is applied,the accessible pore regions decrease,and the capacitance drops.Hence,as the studied hydrated ions have different dimensions,the match between ion/pore sizes differs.To the LiOH and NaClO4electrolytes,increasing the pressure from 60 to 120 and 100 PSI raised the capacitance from 13.5 to 35.2 F g^(-1)and 30.9 to 39.0 F g^(-1),respectively.So,the KOH electrolyte with the lowest and LiCl with the biggest combination of hydrated ion size have their point of maximum capacitance(39.5 and 36.7F g^(-1))achieved at 140 and 80 PSI,respectively.To LiCl and KCl electrolytes,overcompression causes a drop in capacitance higher than 23%.
基金the financial support received from Kansas State University and the UNICAMP Development Foundation (FUNCAMP)the Brazilian Coordination for the Improvement of Higher Education Personnel–CAPES (Pr Int 88887.572651/2020-00+8 种基金88887.374731/2019-00)the financial support from the Brazilian National Council for Scientific and Technological Development–CNPq (310544/2019-0-PQ-2 grant)the S?o Paulo Research Foundation–FAPESP (2020/04431-02017/11958-12014/02163-7)the UNICAMP Development Foundation–FUNCAMP,Shellthe strategic importance of the support given by Brazil’s National Oil,Natural Gas,and Biofuels Agency–ANP via the R&D levy regulationNational Science Foundation Grant (1743701)CMMI NSF CAREER Grant (1454151)。
文摘In situ and operando infrared spectroscopies are powerful techniques to support the design of novel materials for batteries and the development of new battery systems.These techniques can support the study of batteries by identifying the formation of new species and monitoring electrochemical energy stability.However,few works have employed these techniques,which can be used to investigate various materials,including systems beyond lithium-ion technology,in the research of batteries.Therefore,this review presents a comprehensive overview focusing on the main contributions of in situ and operando infrared spectroscopy for lithium-ion batteries(LIBs)and other battery systems.These techniques can successfully identify the formation of species during the electrolyte reduction,electrode degradation,and the formation of the solid-electrolyte interphase(SEI)layer.From these outcomes,it is possible to conclude that this characterization approach should be employed as a protocol to overcome remaining issues in batteries,consequently supporting battery research.This review aims to be a guide on how infrared spectroscopy can contribute to monitoring battery systems and to lead researchers interested in applying this technique.
基金the financial support from the Brazilian funding agencies CNPq(301486/2016-6)the FAEPEX(2426/17),the FAPESP(2016/25082-8,2017/11958-1,2014/02163-7,2018/20756-6,2018/02713-8)and CAPES(1740195)+6 种基金the‘‘Funda??o ao AmparoàPesquisa do Estado de Minas Gerais-FAPEMIG”(Project CEX112-10)the‘‘Secretaria de Estado de Ciência,Tecnologia e Ensino Superior de Minas Gerais-SECTES/MG”(Support for the LMMA Laboratory)the‘‘Conselho Nacional de Desenvolvimento Científico e Tecnológico–CNPq”(PQ-2 grant)support Shell and the strategic importance of the support given by ANP(Brazil’s National Oil,Natural Gas and Biofuels Agency)through the R&D levy regulationthe Center for Research Computing(CRC)at the University of Notre Dame for the computational resources,and the Brazilian agencies CNPq(Reference Number 203393/2018-0)and CAPES(Finance Code 001)for the financial supportfinancial support from the FAPEMIG,CNPq(307742/2017-2 and 432384/2018-9)Brazilian Institute of Science and Technology in Carbon Nanomaterials(INCTNanocarbono)。
文摘Raman probing of carbon electrode and electrolyte under dynamic conditions is performed here using different aqueous electrolytes to elucidate the fundamental events occurring in electrochemical supercapacitor during charge–discharge processes.The areal capacitance ranges from 1.54 to 2.31μF cm^(-2)μm and it is determined using different techniques.These findings indicate that the Helmholtz capacitance governs the overall charge-storage process instead of the space charge(quantum)capacitance commonly verified for HOPG electrodes in the range of~3 to 7μF cm^(-2).Molecular dynamics simulations are employed to elucidate the origin of the reversible Raman spectral changes during the charge–discharge processes.A correlation is verified between the reversible Raman shift and the surface excesses of the different ionic species.A theoretical framework is presented to relate the effect of the applied potential on the Raman shift and its correlation with the surface ionic charge.It is proposed that the Raman shift is governed by the interaction of solvated cations with graphite promoted by polarization conditions.It is the first time that a comparative study on different aqueous electrolyte p H and cation ion size has been performed tracking the Raman spectra change under dynamic polarization conditions and contrasting with comprehensive electrochemistry and dynamic molecular simulations studies.This study shines lights onto the charge-storage mechanism with evidence of Kohn anomaly reduction in the carbon electrode during the reversible adsorption/desorption and insertion/extraction of ionic species.
基金the financial support from the Brazilian funding agencies CNPq(310544/2019-0)FAPESP(2014/02163-7,2017/11958-1&2016/08645-9)+2 种基金FAPEMIG(Financial support for the LMMA/UFVJM Laboratory)CNPq(PQ-2 grant:Process 301095/2018-3)the support from Shell。
文摘We discuss here essential aspects of the experimental supercapacitors characterization by a series of well-known electrochemical methods.We are motivated by a considerable number of publications that misreport procedures and results.Authors often conceal or neglect essential information about the electrochemical analytical apparatus used and its configuration.The lack of such information may lead researchers,especially inexperienced ones,to misunderstand the procedures and results.Eventually,the misled electrochemical equipment configuration favors misinterpretation of data and low reproducibility rates.This paper aims to highlight these issues and clarify them.We explain fundamental concepts of some electrochemical analytical methods,such as cyclic voltammetry,galvanostatic charge-discharge,single potential step chronoamperometry,and electrochemical impedance spectroscopy,focusing on the supercapacitor field.Distinct configurations of electrical parameters are presented and discussed to highlight the effects of incorrect setup and uncover misleading results.We discuss how the electrochemical setup and data analyses matter in reliable data results for the supercapacitor.
基金the financial support from the Brazilian funding agencies CNPq(301486/2016-6)FAEPEX(2426/17)+7 种基金FAPESP(2020/04431-0,2020/04281-8,2016/25082-8,2017/11986-5,2017/11958-1,2014/02163-7,2018/20756-6,2018/02713-8)CAPES(1740195)the financial support from CNPq(Processes 131234/2020-0 and 130741/2021-3)the Fundação ao AmparoàPesquisa do Estado de Minas Gerais(FAPEMIGCNPq for the PQ-2 grant(Process 310544/20190)the support of Shell,the strategic importance of the support given by Brazil’s National Oil,Natural Gas,and Biofuels Agency(ANP)through the R&D levy regulationthe Center for Innovation on New Energies(CINE)the LNLS/CNPEM。
文摘Electrical double-layer capacitors(EDLCs)consist of energy storage devices that present high-power and moderate energy density.The electrolyte and electrode physicochemical properties are crucial for improving their overall energy storage capabilities.Therefore,the stability of the EDLCs’materials is the primary focus of this study.Since energy storage depends on the specific capacitance,and also on the square of the maximum capacitive cell voltage(UMCV).Thus,electrodes with high specific surface area(SSA)and electrolytes with excellent electrochemical stability are commonly reported in the literature.Aqueous electrolytes are safer and green devices compared to other organic-based solutions.On the other hand,their UMCVis reduced compared to other electrolytes(e.g.,organic-based and ionic liquids).In this sense,spanning the UMCVfor aqueous-based electrolytes is a’hot topic’research.Unfortunately,the lack of protocols to establish reliable UMCVvalues has culminated in the publishing of several conflicting results.Herein,we confirm that multiwalled carbon nanotubes(MWCNTs)housed in cells degrade and produce CO_(2) under abusive polarisation conditions.It is probed by employing electrochemical techniques,in-situ FTIR and in-situ Raman spectroscopies.From these considerations,the current study uses spectro-electrochemical techniques to support the correct determination of the electrode and electrolyte stability conditions as a function of the operating electrochemical parameters.