A large database is desired for machine learning(ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure.When a large database is not available,the develo...A large database is desired for machine learning(ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure.When a large database is not available,the development of proper featurization method based on physicochemical nature of target proprieties can improve the predictive power of ML models with a smaller database.In this work,we show that two new featurization methods,volume occupation spatial matrix and heat contribution spatial matrix,can improve the accuracy in predicting energetic materials' crystal density(ρ_(crystal)) and solid phase enthalpy of formation(H_(f,solid)) using a database containing 451 energetic molecules.Their mean absolute errors are reduced from 0.048 g/cm~3 and 24.67 kcal/mol to 0.035 g/cm~3 and 9.66 kcal/mol,respectively.By leave-one-out-cross-validation,the newly developed ML models can be used to determine the performance of most kinds of energetic materials except cubanes.Our ML models are applied to predict ρ_(crystal) and H_(f,solid) of CHON-based molecules of the 150 million sized PubChem database,and screened out 56 candidates with competitive detonation performance and reasonable chemical structures.With further improvement in future,spatial matrices have the potential of becoming multifunctional ML simulation tools that could provide even better predictions in wider fields of materials science.展开更多
Nanothermites have been employed as fuel additives in energetic formulations due to their higher energy density over CHNO energetics. Nevertheless, sintering and degradation of nanoparticles significantly limit the pr...Nanothermites have been employed as fuel additives in energetic formulations due to their higher energy density over CHNO energetics. Nevertheless, sintering and degradation of nanoparticles significantly limit the practical use of nanothermites. In this work, combustion characteristic and aging behavior of aluminum/iron oxide(Al/Fe2O3) nanothermite mixtures were investigated in the presence of micron-scale nickel aimed to produce bimetal thermite powders. The results showed that the alumina content in the combustion residue increased from 88.3% for Al/Fe2O3 nanothermite to 96.5% for the nanothermite mixture containing 20 wt% nickel. Finer particle sizes of combustion residue were obtained for the nanothermite mixtures containing nickel, indicative of the reduced agglomeration. Both results suggested a more complete combustion in the bimetal thermite powders. Aging behavior of the nanothermite mixture was also assessed by measuring the heat of combustion of the mixture before and after aging process. The reduction in heat of combustion of nanothermite mixtures containing nickel was less severe as compared to a significant decrease for the nanothermite mixture without nickel, indicating better aging resistance of the bimetal thermite powders.展开更多
Nano-sized aluminum(Nano-Al)powders hold promise in enhancing the total energy of explosives and the metal acceleration ability at the same time.However,the near-detonation zone effects of reaction between Nano-Al wit...Nano-sized aluminum(Nano-Al)powders hold promise in enhancing the total energy of explosives and the metal acceleration ability at the same time.However,the near-detonation zone effects of reaction between Nano-Al with detonation products remain unclear.In this study,the overall reaction process of 170 nm Al with RDX explosive and its effect on detonation characteristics,detonation reaction zone,and the metal acceleration ability were comprehensively investigated through a variety of experiments such as the detonation velocity test,detonation pressure test,explosive/window interface velocity test and confined plate push test using high-resolution laser interferometry.Lithium fluoride(LiF),which has an inert behavior during the explosion,was used as a control to compare the contribution of the reaction of aluminum.A thermochemical approach that took into account the reactivity of aluminum and ensuing detonation products was adopted to calculate the additional energy release by afterburn.Combining the numerical simulations based on the calculated afterburn energy and experimental results,the parameters in the detonation equation of state describing the Nano-Al reaction characteristics were calibrated.This study found that when the 170 nm Al content is from 0%to 15%,every 5%increase of aluminum resulted in about a 1.3%decrease in detonation velocity.Manganin pressure gauge measurement showed no significant enhancement in detonation pressure.The detonation reaction time and reaction zone length of RDX/Al/wax/80/15/5 explosive is 64 ns and 0.47 mm,which is respectively 14%and 8%higher than that of RDX/wax/95/5 explosive(57 ns and 0.39 mm).Explosive/window interface velocity curves show that 170 nm Al mainly reacted with the RDX detonation products after the detonation front.For the recording time of about 10 ms throughout the plate push test duration,the maximum plate velocity and plate acceleration time accelerated by RDX/Al/wax/80/15/5 explosive is 12%and 2.9 ms higher than that of RDX/LiF/wax/80/15/5,respectively,indicating that the aluminum reaction energy significantly increased the metal acceleration time and ability of the explosive.Numerical simulations with JWLM explosive equation of state show that when the detonation products expanded to 2 times the initial volume,over 80%of the aluminum had reacted,implying very high reactivity.These results are significant in attaining a clear understanding of the reaction mechanism of Nano-Al in the development of aluminized explosives.展开更多
We report a facile way to grow various porous NiO nanostructures including nanoslices,nanoplates,and nanocolumns,which show a structure-dependence in their specific charge capacitances.The formation of controllable po...We report a facile way to grow various porous NiO nanostructures including nanoslices,nanoplates,and nanocolumns,which show a structure-dependence in their specific charge capacitances.The formation of controllable porosity is due to the dehydration and re-crystallization of β-Ni(OH)_(2) nanoplates synthesized by a hydrothermal process.Thermogravimetric analysis shows that the decomposition temperature of the β-Ni(OH)_(2) nanostructures is related to their morphology.In electrochemical tests,the porous NiO nanostructures show stable cycling performance with retention of specific capacitance over 1000 cycles.Interestingly,the formation of nanocolumns by the stacking of β-Ni(OH)_(2) nanoslices/plates favors the creation of small pores in the NiO nanocrystals obtained after annealing,and the surface area is over five times larger than that of NiO nanoslices and nanoplates.Consequently,the specific capacitance of the porous NiO nanocolumns(390 F/g)is significantly higher than that of the nanoslices(176 F/g)or nanoplates(285 F/g)at a discharge current of 5 A/g.This approach provides a clear illustration of the process-structure-property relationship in nanocrystal synthesis and potentially offers strategies to enhance the performance of supercapacitor electrodes.展开更多
Lithium ion batteries(LIBs)that can be operated under extended temperature range hold significant application potentials.Here in this work,we successfully synthesized Co2V2O7 electrode with rich porosity from a facile...Lithium ion batteries(LIBs)that can be operated under extended temperature range hold significant application potentials.Here in this work,we successfully synthesized Co2V2O7 electrode with rich porosity from a facile hydrothermal and combustion process.When applied as anode for LIBs,the electrode displayed excellent stability and rate performance in a wide range of temperatures.Remarkably,a stable capacity of 206 mAhg 1 was retained after cycling at a high current density of 10 A·g-1 for 6,000 cycles at room temperature(25℃).And even when tested under extreme conditions,i.e.,-20 and 60℃,the battery still maintained its remarkable stability and rate capability.For example,at-20℃,a capacity of 633 mAh·g 1 was retained after 50 cycles at 0.1 A·g 1;and even after cycling at 60℃ at 10 A·g-1 for 1,000 cycles,a reversible capacity of 885 mAh·g-1 can be achieved.We believe the development of such electrode material will fciliate progress of the next-generation LIBs with wide operating windows.展开更多
基金support from the Ministry of Education(MOE) Singapore Tier 1 (RG8/20)。
文摘A large database is desired for machine learning(ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure.When a large database is not available,the development of proper featurization method based on physicochemical nature of target proprieties can improve the predictive power of ML models with a smaller database.In this work,we show that two new featurization methods,volume occupation spatial matrix and heat contribution spatial matrix,can improve the accuracy in predicting energetic materials' crystal density(ρ_(crystal)) and solid phase enthalpy of formation(H_(f,solid)) using a database containing 451 energetic molecules.Their mean absolute errors are reduced from 0.048 g/cm~3 and 24.67 kcal/mol to 0.035 g/cm~3 and 9.66 kcal/mol,respectively.By leave-one-out-cross-validation,the newly developed ML models can be used to determine the performance of most kinds of energetic materials except cubanes.Our ML models are applied to predict ρ_(crystal) and H_(f,solid) of CHON-based molecules of the 150 million sized PubChem database,and screened out 56 candidates with competitive detonation performance and reasonable chemical structures.With further improvement in future,spatial matrices have the potential of becoming multifunctional ML simulation tools that could provide even better predictions in wider fields of materials science.
文摘Nanothermites have been employed as fuel additives in energetic formulations due to their higher energy density over CHNO energetics. Nevertheless, sintering and degradation of nanoparticles significantly limit the practical use of nanothermites. In this work, combustion characteristic and aging behavior of aluminum/iron oxide(Al/Fe2O3) nanothermite mixtures were investigated in the presence of micron-scale nickel aimed to produce bimetal thermite powders. The results showed that the alumina content in the combustion residue increased from 88.3% for Al/Fe2O3 nanothermite to 96.5% for the nanothermite mixture containing 20 wt% nickel. Finer particle sizes of combustion residue were obtained for the nanothermite mixtures containing nickel, indicative of the reduced agglomeration. Both results suggested a more complete combustion in the bimetal thermite powders. Aging behavior of the nanothermite mixture was also assessed by measuring the heat of combustion of the mixture before and after aging process. The reduction in heat of combustion of nanothermite mixtures containing nickel was less severe as compared to a significant decrease for the nanothermite mixture without nickel, indicating better aging resistance of the bimetal thermite powders.
基金The authors would like to acknowledge National Natural Science Foundation of China(Grant No.11832006)Open Project of State Key Laboratory of Explosion Science and Technology in Beijing Institute of Technology(Grant No.KFJJ20-04 M)to provide fund for conducting experiments.
文摘Nano-sized aluminum(Nano-Al)powders hold promise in enhancing the total energy of explosives and the metal acceleration ability at the same time.However,the near-detonation zone effects of reaction between Nano-Al with detonation products remain unclear.In this study,the overall reaction process of 170 nm Al with RDX explosive and its effect on detonation characteristics,detonation reaction zone,and the metal acceleration ability were comprehensively investigated through a variety of experiments such as the detonation velocity test,detonation pressure test,explosive/window interface velocity test and confined plate push test using high-resolution laser interferometry.Lithium fluoride(LiF),which has an inert behavior during the explosion,was used as a control to compare the contribution of the reaction of aluminum.A thermochemical approach that took into account the reactivity of aluminum and ensuing detonation products was adopted to calculate the additional energy release by afterburn.Combining the numerical simulations based on the calculated afterburn energy and experimental results,the parameters in the detonation equation of state describing the Nano-Al reaction characteristics were calibrated.This study found that when the 170 nm Al content is from 0%to 15%,every 5%increase of aluminum resulted in about a 1.3%decrease in detonation velocity.Manganin pressure gauge measurement showed no significant enhancement in detonation pressure.The detonation reaction time and reaction zone length of RDX/Al/wax/80/15/5 explosive is 64 ns and 0.47 mm,which is respectively 14%and 8%higher than that of RDX/wax/95/5 explosive(57 ns and 0.39 mm).Explosive/window interface velocity curves show that 170 nm Al mainly reacted with the RDX detonation products after the detonation front.For the recording time of about 10 ms throughout the plate push test duration,the maximum plate velocity and plate acceleration time accelerated by RDX/Al/wax/80/15/5 explosive is 12%and 2.9 ms higher than that of RDX/LiF/wax/80/15/5,respectively,indicating that the aluminum reaction energy significantly increased the metal acceleration time and ability of the explosive.Numerical simulations with JWLM explosive equation of state show that when the detonation products expanded to 2 times the initial volume,over 80%of the aluminum had reacted,implying very high reactivity.These results are significant in attaining a clear understanding of the reaction mechanism of Nano-Al in the development of aluminized explosives.
基金The authors gratefully acknowledge the AcRF Tier 1 RG 31/08 from Ministry of Education Singapore and No.NRF2009EWT-CERP001-026 Singaporethe National Natural Science Foundation of China(No.20901003)+1 种基金the Natural Science Foundation of the Educational Department of Anhui Province(No.KJ2008B167)the Young Teacher Program of Anhui Normal University(No.2009xqnzc19).
文摘We report a facile way to grow various porous NiO nanostructures including nanoslices,nanoplates,and nanocolumns,which show a structure-dependence in their specific charge capacitances.The formation of controllable porosity is due to the dehydration and re-crystallization of β-Ni(OH)_(2) nanoplates synthesized by a hydrothermal process.Thermogravimetric analysis shows that the decomposition temperature of the β-Ni(OH)_(2) nanostructures is related to their morphology.In electrochemical tests,the porous NiO nanostructures show stable cycling performance with retention of specific capacitance over 1000 cycles.Interestingly,the formation of nanocolumns by the stacking of β-Ni(OH)_(2) nanoslices/plates favors the creation of small pores in the NiO nanocrystals obtained after annealing,and the surface area is over five times larger than that of NiO nanoslices and nanoplates.Consequently,the specific capacitance of the porous NiO nanocolumns(390 F/g)is significantly higher than that of the nanoslices(176 F/g)or nanoplates(285 F/g)at a discharge current of 5 A/g.This approach provides a clear illustration of the process-structure-property relationship in nanocrystal synthesis and potentially offers strategies to enhance the performance of supercapacitor electrodes.
基金the National Natural Science Foundation of China(Nos.21606003,51802044,51972067,51672193,51420105002,and 51920105004)State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization.The authors also acknowledge Singapore MOE AcRF Tier 2 under Grant Nos.2018-T2-1-010 and MOE2017-T2-2-069National Research Foundation of Singapore(NRF)Investigatorship,award Number NRF2016NRFNRFI001-22.
文摘Lithium ion batteries(LIBs)that can be operated under extended temperature range hold significant application potentials.Here in this work,we successfully synthesized Co2V2O7 electrode with rich porosity from a facile hydrothermal and combustion process.When applied as anode for LIBs,the electrode displayed excellent stability and rate performance in a wide range of temperatures.Remarkably,a stable capacity of 206 mAhg 1 was retained after cycling at a high current density of 10 A·g-1 for 6,000 cycles at room temperature(25℃).And even when tested under extreme conditions,i.e.,-20 and 60℃,the battery still maintained its remarkable stability and rate capability.For example,at-20℃,a capacity of 633 mAh·g 1 was retained after 50 cycles at 0.1 A·g 1;and even after cycling at 60℃ at 10 A·g-1 for 1,000 cycles,a reversible capacity of 885 mAh·g-1 can be achieved.We believe the development of such electrode material will fciliate progress of the next-generation LIBs with wide operating windows.