Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transiti...Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transition metal substitution to reduce the Co content.However,the traditional coprecipitation method cannot satisfy the requirements of multielement coprecipitation and uniform distribution of elements due to the differences between element concentration and deposition rate.In this work,spray pyrolysis was used to prepare LiNi_(0.9)Co_(0.1-x)W_(x)O_(2)(LNCW).In this regard,the pyrolysis behavior of ammonium metatungstate was analyzed,together with the substitu-tion of W for Co.With the possibility of spray pyrolysis,the Ni-Co-W-containing oxide precursor presents a homogeneous distribution of metal elements,which is beneficial for the uniform substitution of W in the final materials.It was observed that with W substitution,the size of primary particles decreased from 338.06 to 71.76 nm,and cation disordering was as low as 3.34%.As a consequence,the pre-pared LNCW exhibited significantly improved electrochemical performance.Under optimal conditions,the lithium-ion battery assembled with LiNi_(0.9)Co_(0.0925)W_(0.0075)O_(2)(LNCW-0.75mol%)had an improved capacity retention of 82.7%after 200 cycles,which provides insight in-to the development of Ni-rich low-Co materials.This work presents that W can compensate for the loss caused by Co deficiency to a cer-tain extent.展开更多
Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been pr...Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been proposed to significantly improve safety yet are impeded by poor interfacial solid–solid contact and fast interface degradation.As a compromising strategy,in situ solidification has been proposed in recent years to fabricate quasi-solid-state batteries,which have great advantages in constructing intimate interfaces and cost-effective mass manufacturing.In this work,quasi-solid-state pouch cells with high loading electrodes(≥3 m Ah cm^(-2))were fabricated via in situ solidification of poly(ethylene glycol)diacrylate-based polymer electrolytes(PEGDA-PEs).Both single-layer and multilayer quasi-solid-state pouch cells(2.0 Ah)have demonstrated stable electrochemical performance over500 cycles.The superb electrochemical stability is closely related to the formation of robust and compatible interphase,which successfully inhibits interfacial side reactions and prevents interfacial structural degradation.This work demonstrates that in situ solidification is a facile and cost-effective approach to fabricate quasi-solid-state pouch cells with both excellent electrochemical performance and safety.展开更多
Camelina sativa is a self-pollinating and facultative outcrossing oilseed crop.Genetic engineering has been used to improve camelina yield potential for altered fatty acid composition,modified protein profiles,improve...Camelina sativa is a self-pollinating and facultative outcrossing oilseed crop.Genetic engineering has been used to improve camelina yield potential for altered fatty acid composition,modified protein profiles,improved seed and oil yield,and enhanced drought resistance.The deployment of transgenic camelina in the field posits high risks related to the introgression of transgenes into nontransgenic camelina and wild relatives.Thus,effective bioconfinement strategies need to be developed to prevent pollen-mediated gene f low(PMGF)from transgenic camelina.In the present study,we overexpressed the cleistogamy(i.e.f loral petal non-openness)-inducing PpJAZ1 gene from peach in transgenic camelina.Transgenic camelina overexpressing PpJAZ1 showed three levels of cleistogamy,affected pollen germination rates after anthesis but not during anthesis,and caused a minor silicle abortion only on the main branches.We also conducted field trials to examine the effects of the overexpressed PpJAZ1 on PMGF in the field,and found that the overexpressed PpJAZ1 dramatically inhibited PMGF from transgenic camelina to non-transgenic camelina under the field conditions.Thus,the engineered cleistogamy using the overexpressed PpJAZ1 is a highly effective bioconfinement strategy to limit PMGF from transgenic camelina,and could be used for bioconfinement in other dicot species.展开更多
With high theoretical energy density and the natural abundance of S, lithium-sulfur (Li-S) batteries areconsidered to be the promising next generation high-energy rechargeable energy storage devices. How-ever, issue...With high theoretical energy density and the natural abundance of S, lithium-sulfur (Li-S) batteries areconsidered to be the promising next generation high-energy rechargeable energy storage devices. How-ever, issues including electronical insulation of S, the lithium polysulfides (LiPSs) dissolution and the shortcycle lifespan have prevented Li-S batteries from being practical applied. Feasible settlements of confiningLiPSs to reduce the loss of active substances and improve the cycle stability include wrapping sulfur withcompact layers, designing matrix with porous or hollow structures, adding adsorbents owning stronginteraction with sulfur and inserting polysulfide barriers between cathodes and separators. This reviewcategorizes them into physical and chemical confinements according to the influencing mechanism. Withfurther discussion of their merits and flaws, synergy of the physical and chemical confinement is believedto be the feasible avenue that can guide Li-S batteries to the practical application.展开更多
Broad application of plant transformation remains challenging because the efficiency of plant regeneration and regeneration-based transformation in many plant species is extremely low.Many species and genotypes are no...Broad application of plant transformation remains challenging because the efficiency of plant regeneration and regeneration-based transformation in many plant species is extremely low.Many species and genotypes are not responsive to traditional hormone-based regeneration systems.This regeneration recalcitrance hampers the application of many technologies such as micropropagation,transgenic breeding,and gene editing in various plant species,including ornamental flowers,shrubs,and trees.Various developmental genes have long been studied for their ability to improve plant meristematic induction and regeneration.Lately,it was demonstrated that the combined and refined expression of morphogenic regulator genes WUSCHEL and BABY BOOM could alleviate their pleiotropic effects and permit transformation in recalcitrant monocots.Moreover,ectopic expression of plant growth-regulating factors(GRFs)alone or in combination with GRF-interacting factors(GIFs)improved the regeneration and transformation of dicot and monocot species.Fine-tuning the expression of these genes provides new opportunities to improve transformation efficiencies and facilitate the application of new breeding technologies in ornamental plants.展开更多
BACKGROUND Scleritis is a rare disease and the incidence of bilateral posterior scleritis is even rarer.Unfortunately,misdiagnosis of the latter is common due to its insidious onset,atypical symptoms,and varied manife...BACKGROUND Scleritis is a rare disease and the incidence of bilateral posterior scleritis is even rarer.Unfortunately,misdiagnosis of the latter is common due to its insidious onset,atypical symptoms,and varied manifestations.We report here a case of bilateral posterior scleritis that presented with acute eye pain and intraocular hypertension,and was initially misdiagnosed as acute primary angle closure.Expanding the literature on such cases will not only increase physicians’awareness but also help to improve accurate diagnosis.CASE SUMMARY A 53-year-old man was referred to our hospital to address a 4-d history of bilateral acute eye pain,headache,and loss of vision,after initial presentation to a local hospital 3 d prior.Our initial examination revealed bilateral cornea edema accompanied by a shallow anterior chamber and visual acuity reduction,with left-eye amblyopia(>30 years).There was bilateral hypertension(by intraocular pressure:28 mmHg in right,34 mmHg in left)and normal fundi.Accordingly,acute primary angle closure was diagnosed.Miotics and ocular hypotensive drugs were prescribed,but the symptoms continued to worsen over the 3-d treatment course.Further imaging examinations(i.e.,anterior segment photography and ultrasonography)indicated a diagnosis of bilateral posterior scleritis.Methylprednisolone,topical atropine,and steroid eye drops were prescribed along with intraocular pressure-lowering agents.Subsequent optical coherence tomography(OCT)showed gradual improvements in subretinal fluid under the sensory retina,thickened sclera,and ciliary body detachment.CONCLUSION Bilateral posterior scleritis can lead to secondary acute angle closure.Diagnosis requires ophthalmic accessory examinations(i.e.,ultrasound biomicroscopy,Bscan,and OCT).展开更多
Versatile module design of precursor networks enables flexible functionalization of nano-carbon electrode materials to meet the adaptable energy-storage demand. Functionalized heterogeneous networks are more likely to...Versatile module design of precursor networks enables flexible functionalization of nano-carbon electrode materials to meet the adaptable energy-storage demand. Functionalized heterogeneous networks are more likely to decompose by swift temperature programming together with predesign module removal, so high functionality/network transfer from precursor to carbon is still a work in progress. A pre-stabilization route is proposed here to enhance the network strength at early pyrolysis and pin up precursor-level functionalities on the final carbon. Such strategy successfully fixes more electroactive N(4.28-8.86 wt%) into the resultant carbon microspheres compared with non-pretreated carbon(2.89wt%), as well as achieves broad ion-accessible platforms of 1575-2269 m^(2)/g with preset structural superiorities. As a result, a typical acidic device reveals an outstanding specific capacitance of 383 F/g at 10 mV/s. Taking advantage of a novel LiNO_(3)-PAM polymer electrolyte, the upgraded symmetric device displays the maximum specific capacitance of 229 F/g, along with a boosted energy density of 41.1 Wh/kg at 643.4 W/kg. This work opens up a feasible insight into realizing highly efficient precursor/electrode design toward superior system with outstanding energy/power feature and temperature applicability.展开更多
Hard carbon derived from biomass is regarded as a promising anode material for sodium-ion batteries(SIBs)because of its low operating potential,high capacity,resource availability,and low cost.However,scientific and t...Hard carbon derived from biomass is regarded as a promising anode material for sodium-ion batteries(SIBs)because of its low operating potential,high capacity,resource availability,and low cost.However,scientific and technological challenges still exist to prepare hard carbon with a high initial Coulombic efficiency(ICE),an excellent rate capability,and good cycling stability.In this work,we report a self-supported hard carbon electrode from fungus-pretreated basswood with an improved graphitization degree and a low tortuosity.Compared with the hard carbon derived from basswood,the hard carbon electrode from fungus-pretreated basswood has an improved rate capability of 242.3 mAh·g^(−1)at 200 mA·g^(−1)and cycling stability with 93.9%of its capacity retention after 200 cycles at 40 mA·g^(−1),as well as the increased ICE from 84.3%to 88.2%.Additionally,ex-situ X-ray diffraction indicates that Na+adsorption caused the sloping capacity,whereas Na+intercalation between interlayer spacing corresponded to the low potential plateau capacity.This work provides a new perspective for the preparation of high-performance hard carbon and gains the in-depth understanding of Na storage mechanism.展开更多
Li-metal anodes are one of the most promising energy storage systems that can considerably exceed the current technology to meet the ever-increasing demand of power applications. The apparent cycling performances and ...Li-metal anodes are one of the most promising energy storage systems that can considerably exceed the current technology to meet the ever-increasing demand of power applications. The apparent cycling performances and dendrite challenges of Li-metal anodes are highly influenced by the interface layer on the Li-metal anode because the intrinsic high reactivity of metallic Li results in an inevitable solid-state interface layer between the Li-metal and electrolytes. In this review, we summarize the recent progress on the interfacial chemistry regarding the interactions between electrolytes and ion migration through dynamic interfaces. The critical factors that affect the interface formation for constructing a stable interface with a low resistance are reviewed. Moreover, we review emerging strategies for rationally designing multiple-structured solid-state electrolytes and their interfaces, including the interfacial properties within hybrid electrolytes and the solid electrolyte/electrode interface. Finally, we present scientific issues and perspectives associated with Li-metal anode interfaces toward a practical Li-metal battery.展开更多
Perovskite solar cells present one of the most prominent photovoltaic technologies,yet their stability,and engineering at the molecular level remain challenging.We have demonstrated multifunctional molecules to improv...Perovskite solar cells present one of the most prominent photovoltaic technologies,yet their stability,and engineering at the molecular level remain challenging.We have demonstrated multifunctional molecules to improve the operating stability of perovskite solar cells while depicting a high-power conversion efficiency.The multifunctional molecule 4-[(trifluoromethyl)sulphanyl]-aniline(4TA)with trifluoromethyl(-CF_(3))and aniline(-NH_(2))moieties is meticulously designed to modulate the perovskite.The-CF_(3) and-NH_(2) functional groups have strong interaction with perovskite to suppress surface defects to improve device stability,as well as obtain large crystal grains through delaying crystallization.Moreover,this-CF_(3) forms a hydrophobic barrier on the surface of the perovskite to prevent cell decomposition.Consequently,the performance of the perovskite solar cells is remarkably improved with the efficiency increased from 18.00% to 20.24%.The perovskite solar cells with multifunctional molecular maintaining 93% of their original efficiency for over 30 days(-55%humidity)in air without device encapsulation,exhibiting a high long-term stability.Moreover,the lead leakage issue of perovskite solar cells has also been suppressed by the built-in 4TA molecule,which is beneficial to environment-friendly application.Ultimately,we believe this multifunctional small molecule provides an available way to achieve high performance perovskite solar cells and the related design strategy is helpful to further develop more versatile materials for perovskite-based optoelectronic devices.展开更多
The urgent demands for high-energy-density rechargeable batteries promote a flourishing development of Li metal anode.However,the uncontrollable dendrites growth and serious side reactions severely lirmit its commerci...The urgent demands for high-energy-density rechargeable batteries promote a flourishing development of Li metal anode.However,the uncontrollable dendrites growth and serious side reactions severely lirmit its commercial application.Herein,an artificial LiF-rich solid electrolyte interphase(SEl)is constructed at molecular-level using one-step photopolymerization of hexafluorobutyl acrylate based solution,where the LiF is in situ generated during photopolymerization process(denoted as PHALF).The LiF-rich layercomprised flexible polymer matrix and inorganic LiF filler not only ensures intimate contact with Li anode and adapts volume fluctuations during cycling but also regulates Li deposition behavior,enabling it to suppress the dendrite growth and block side reactions between the electrolyte and Li metal.Accordingly,the PHALF-Li anode presents superior stable cycling performance over 500 h at 1 mA·cm^-2 for 1 mA·h·cm^-2 without dendrites growth in carbonate electrolyte.The work provides a novel approach to design and build in situ artificial SEl layer for high-safety and stable Li metal anodes.展开更多
Magnetically separated and N, S co-doped mesoporous carbon microspheres (NIS-MCMs/Fe304) are fabricated by encapsulating Si02 nanoparticles within N, S-containing polymer microspheres which were prepared using resor...Magnetically separated and N, S co-doped mesoporous carbon microspheres (NIS-MCMs/Fe304) are fabricated by encapsulating Si02 nanoparticles within N, S-containing polymer microspheres which were prepared using resorcinol/formaldehyde as the carbon source and cysteine as the nitrogen and sulfur co-precursors, followed by the carbonization process, silica template removal, and the introduction of Fe3O4 into the carbon mesopores. N/S-MCMs/Fe3O4 exhibits an enhanced Hg2+ adsorption capacity of 74.5 rag/g, and the adsorbent can be conveniently and rapidly separated from wastewater using an external magnetic field. This study opens up new opportunities to synthesize well- developed, carbon-based materials as an adsorbent for potential applications in the removal of mercury ions from wastewater.展开更多
Highly active N,O-doped hierarchical porous carbons(NOCs)are fabricated through the in-situ polymerization and pyrolysis of o-tolidine and p-benzoquinone.As-prepared NOCs have a variety of faradaic-active species(N-6,...Highly active N,O-doped hierarchical porous carbons(NOCs)are fabricated through the in-situ polymerization and pyrolysis of o-tolidine and p-benzoquinone.As-prepared NOCs have a variety of faradaic-active species(N-6,N-5 and O-I),high ion-accessible platform(1799 m^2/g)and hierarchically micro-meso-macro porous architecture.Consequently,the resultant NOC electrode delivers an advantageous specific capacitance(311 F/g),with a pseudocapacitive contribution of 37%in a threeelectrode configuration,and an enhanced energy output of 18.0 Wh/kg@350 W/kg owing to the enlarged faradaic effect in an aqueous redox-active cell.Besides,a competitive energy density(74.9 Wh/kg)and high-potential durability(87.8%)are achieved in an ionic liquid(EMIMB F4)-assembled device.This study sheds light on a straightforward avenue to optimize the faradaic activity and nanoarchitecture for advanced supercapacitors.展开更多
We demonstrate a simple and highly efficient strategy to synthesize MnO2/nitrogen-doped ultramicroporous carbon nanospheres(MnO2/N-UCNs) for supercapacitor application.MnO2/N-UCNs were fabricated via a template-free...We demonstrate a simple and highly efficient strategy to synthesize MnO2/nitrogen-doped ultramicroporous carbon nanospheres(MnO2/N-UCNs) for supercapacitor application.MnO2/N-UCNs were fabricated via a template-free polymerization of resorcinol/formaldehyde on the surface of phloroglucinol/terephthalaldehyde colloids in the presence of hexamethylenetetramine,followed by carbonization and then a redox reaction between carbons and KMnO4.As-prepared MnO2/N-UCNs exhibits regular ultramicropores,high surface area,nitrogen heteroatom,and high content of MnO2.A typical MnO2/N-UCNs with 57 wt.%MnO2 doping content(denoted as MnO2(57%)/N-UCNs) makes the most use of the synergistic effect between carbons and metal oxides.MnO2(57%)/N-UCNs as a supercapacitor electrode exhibits excellent electrochemical performance such as a high specific capacitance(401 F/g at 1.0 A/g) and excellent charge/discharge stability(86.3%of the initial capacitance after 10,000 cycles at 2.0 A/g) in 1.0 mol/L Na2SO4 electrolyte.The well-designed and high-performance MnO2/N-UCNs highlight the great potential for advanced supercapacitor applications.展开更多
A novel zinc tartrate oriented hydrothermal synthesis of microporous carbons was reported. Zinc–organic complex obtained via a simple chelation reaction of zinc ions and tartaric acid is introduced into the networks ...A novel zinc tartrate oriented hydrothermal synthesis of microporous carbons was reported. Zinc–organic complex obtained via a simple chelation reaction of zinc ions and tartaric acid is introduced into the networks of resorcinol/formaldehyde polymer under hydrothermal condition. After carbonization process, the resultant microporous carbons achieve high surface area(up to 1255 m^2/g) and large mean pore size(1.99 nm) which guarantee both high specific capacitance(225 F/g at 1.0 A/g) and fast charge/discharge operation(20 A/g) when used as a supercapacitor electrode. Besides, the carbon electrode shows good cycling stability, with 93% capacitance retention at 1.0 A/g after 1000 cycles. The welldesigned and high-performance microporous carbons provide important prospects for supercapacitor applications.展开更多
A facile fabrication strategy is reported to obtain N/O codoped porous carbon nanosheets for pur-pose of ameliorating the charge transfer and accumulation in the concentrated LiTFSI(lithium bis(trifluoromethane sulfon...A facile fabrication strategy is reported to obtain N/O codoped porous carbon nanosheets for pur-pose of ameliorating the charge transfer and accumulation in the concentrated LiTFSI(lithium bis(trifluoromethane sulfonyl)imide)electrolyte.By tunning the feed ratio of comonomers,the porous nanosheet structure is endowed with a significant ion-adsorption surface area(1630 m^(2)/g)and intercon-nected hierarchical porosity;meanwhile,high-level N/O dopants(N:3.58 at%,O:12.91 at%)increase the effective contact area for electrolyte ions,and further facilitate rapid ion/electron transfer.Benefiting from the advantageous features,carbon nanosheets electrode reveal an enhanced specific capacitance(375 F/g)in three-electrode configuration and the H_(2)SO_(4)-based device yields a high gravimetric energy density of 11.4 Wh/kg.Particularly,the ion-diffusion highways in porous carbon nanosheets contribute to the 2.25 V LiTFSI-based symmetric device with a high energy delivery up to 33.1 Wh/kg.This work offers an in-spiring strategy for facile fabrication of carbon nanosheets,and demonstrates their promising application in“water-in-salt”electrolyte-based supercapacitor systems.展开更多
基金supported by the National Natural Science Foundation of China(No.52122407)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC3048)the Key Research and Development Program of Yunnan Province,China(No.202103AA080019).
文摘Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transition metal substitution to reduce the Co content.However,the traditional coprecipitation method cannot satisfy the requirements of multielement coprecipitation and uniform distribution of elements due to the differences between element concentration and deposition rate.In this work,spray pyrolysis was used to prepare LiNi_(0.9)Co_(0.1-x)W_(x)O_(2)(LNCW).In this regard,the pyrolysis behavior of ammonium metatungstate was analyzed,together with the substitu-tion of W for Co.With the possibility of spray pyrolysis,the Ni-Co-W-containing oxide precursor presents a homogeneous distribution of metal elements,which is beneficial for the uniform substitution of W in the final materials.It was observed that with W substitution,the size of primary particles decreased from 338.06 to 71.76 nm,and cation disordering was as low as 3.34%.As a consequence,the pre-pared LNCW exhibited significantly improved electrochemical performance.Under optimal conditions,the lithium-ion battery assembled with LiNi_(0.9)Co_(0.0925)W_(0.0075)O_(2)(LNCW-0.75mol%)had an improved capacity retention of 82.7%after 200 cycles,which provides insight in-to the development of Ni-rich low-Co materials.This work presents that W can compensate for the loss caused by Co deficiency to a cer-tain extent.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC),Canada Research Chair Program(CRC),Canada Foundation for Innovation(CFI),Ontario Research Fund(ORF),China Automotive Battery Research Institute Co.,Ltd.,Glabat Solid-State Battery Inc.,Canada Light Source(CLS)at the University of Saskatchewan,Interdisciplinary Development Initiatives(IDI)by Western University,and University of Western Ontariothe support from Mitacs Accelerate Program(IT13735)the funding support from Banting Postdoctoral Fel owship(BPF—180162)
文摘Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been proposed to significantly improve safety yet are impeded by poor interfacial solid–solid contact and fast interface degradation.As a compromising strategy,in situ solidification has been proposed in recent years to fabricate quasi-solid-state batteries,which have great advantages in constructing intimate interfaces and cost-effective mass manufacturing.In this work,quasi-solid-state pouch cells with high loading electrodes(≥3 m Ah cm^(-2))were fabricated via in situ solidification of poly(ethylene glycol)diacrylate-based polymer electrolytes(PEGDA-PEs).Both single-layer and multilayer quasi-solid-state pouch cells(2.0 Ah)have demonstrated stable electrochemical performance over500 cycles.The superb electrochemical stability is closely related to the formation of robust and compatible interphase,which successfully inhibits interfacial side reactions and prevents interfacial structural degradation.This work demonstrates that in situ solidification is a facile and cost-effective approach to fabricate quasi-solid-state pouch cells with both excellent electrochemical performance and safety.
基金supported by Biotechnology Risk Assessment Grant Program competitive grant no.2016-33522-25627 from the U.S.Department of Agriculture,the Hatch project 02685 from the U.S.Department of Agriculture National Institute of Food and Agriculture,and the startup funding to the Liu laboratory from North Carolina State University.
文摘Camelina sativa is a self-pollinating and facultative outcrossing oilseed crop.Genetic engineering has been used to improve camelina yield potential for altered fatty acid composition,modified protein profiles,improved seed and oil yield,and enhanced drought resistance.The deployment of transgenic camelina in the field posits high risks related to the introgression of transgenes into nontransgenic camelina and wild relatives.Thus,effective bioconfinement strategies need to be developed to prevent pollen-mediated gene f low(PMGF)from transgenic camelina.In the present study,we overexpressed the cleistogamy(i.e.f loral petal non-openness)-inducing PpJAZ1 gene from peach in transgenic camelina.Transgenic camelina overexpressing PpJAZ1 showed three levels of cleistogamy,affected pollen germination rates after anthesis but not during anthesis,and caused a minor silicle abortion only on the main branches.We also conducted field trials to examine the effects of the overexpressed PpJAZ1 on PMGF in the field,and found that the overexpressed PpJAZ1 dramatically inhibited PMGF from transgenic camelina to non-transgenic camelina under the field conditions.Thus,the engineered cleistogamy using the overexpressed PpJAZ1 is a highly effective bioconfinement strategy to limit PMGF from transgenic camelina,and could be used for bioconfinement in other dicot species.
基金supported by Basic Science Center Project of National Natural Science Foundation of China under grant No.51788104the National Natural Science Foundation of China (grant nos.51772301 and 21773264)+1 种基金the National Key R&D Program of China (grant no.2016YFA0202500)the “Strategic Priority Research Program” of the Chinese Academy of Sciences (grant no.XDA09010300)
文摘With high theoretical energy density and the natural abundance of S, lithium-sulfur (Li-S) batteries areconsidered to be the promising next generation high-energy rechargeable energy storage devices. How-ever, issues including electronical insulation of S, the lithium polysulfides (LiPSs) dissolution and the shortcycle lifespan have prevented Li-S batteries from being practical applied. Feasible settlements of confiningLiPSs to reduce the loss of active substances and improve the cycle stability include wrapping sulfur withcompact layers, designing matrix with porous or hollow structures, adding adsorbents owning stronginteraction with sulfur and inserting polysulfide barriers between cathodes and separators. This reviewcategorizes them into physical and chemical confinements according to the influencing mechanism. Withfurther discussion of their merits and flaws, synergy of the physical and chemical confinement is believedto be the feasible avenue that can guide Li-S batteries to the practical application.
基金supported by the United States Department of Agriculture(USDA)-Agriculture Research Service(ARS)Base funds to the Duan laboratory,and the USDA Floriculture and Nursery Research Initiative(FNRI)grant#8020-21000-071-23S and the USDA National Institute of Food and Agriculture(NIFA)Hatch project 02685 to the Liu laboratory.The authors thank the anonymous reviewers for their constructive comments and suggestions.
文摘Broad application of plant transformation remains challenging because the efficiency of plant regeneration and regeneration-based transformation in many plant species is extremely low.Many species and genotypes are not responsive to traditional hormone-based regeneration systems.This regeneration recalcitrance hampers the application of many technologies such as micropropagation,transgenic breeding,and gene editing in various plant species,including ornamental flowers,shrubs,and trees.Various developmental genes have long been studied for their ability to improve plant meristematic induction and regeneration.Lately,it was demonstrated that the combined and refined expression of morphogenic regulator genes WUSCHEL and BABY BOOM could alleviate their pleiotropic effects and permit transformation in recalcitrant monocots.Moreover,ectopic expression of plant growth-regulating factors(GRFs)alone or in combination with GRF-interacting factors(GIFs)improved the regeneration and transformation of dicot and monocot species.Fine-tuning the expression of these genes provides new opportunities to improve transformation efficiencies and facilitate the application of new breeding technologies in ornamental plants.
文摘BACKGROUND Scleritis is a rare disease and the incidence of bilateral posterior scleritis is even rarer.Unfortunately,misdiagnosis of the latter is common due to its insidious onset,atypical symptoms,and varied manifestations.We report here a case of bilateral posterior scleritis that presented with acute eye pain and intraocular hypertension,and was initially misdiagnosed as acute primary angle closure.Expanding the literature on such cases will not only increase physicians’awareness but also help to improve accurate diagnosis.CASE SUMMARY A 53-year-old man was referred to our hospital to address a 4-d history of bilateral acute eye pain,headache,and loss of vision,after initial presentation to a local hospital 3 d prior.Our initial examination revealed bilateral cornea edema accompanied by a shallow anterior chamber and visual acuity reduction,with left-eye amblyopia(>30 years).There was bilateral hypertension(by intraocular pressure:28 mmHg in right,34 mmHg in left)and normal fundi.Accordingly,acute primary angle closure was diagnosed.Miotics and ocular hypotensive drugs were prescribed,but the symptoms continued to worsen over the 3-d treatment course.Further imaging examinations(i.e.,anterior segment photography and ultrasonography)indicated a diagnosis of bilateral posterior scleritis.Methylprednisolone,topical atropine,and steroid eye drops were prescribed along with intraocular pressure-lowering agents.Subsequent optical coherence tomography(OCT)showed gradual improvements in subretinal fluid under the sensory retina,thickened sclera,and ciliary body detachment.CONCLUSION Bilateral posterior scleritis can lead to secondary acute angle closure.Diagnosis requires ophthalmic accessory examinations(i.e.,ultrasound biomicroscopy,Bscan,and OCT).
基金financially supported by the National Natural Science Foundation of China(Nos.21875165,51772216,21905207 and 22172111)the Science and Technology Commission of Shanghai Municipality,China(Nos.20ZR1460300,19DZ2271500 and 22ZR1464100)+2 种基金Zhejiang Provincial Natural Science Foundation of China(No.LY19B010003)the Fundamental Research Funds for the Central Universitiesthe Large Equipment Test Foundation of Tongji University。
文摘Versatile module design of precursor networks enables flexible functionalization of nano-carbon electrode materials to meet the adaptable energy-storage demand. Functionalized heterogeneous networks are more likely to decompose by swift temperature programming together with predesign module removal, so high functionality/network transfer from precursor to carbon is still a work in progress. A pre-stabilization route is proposed here to enhance the network strength at early pyrolysis and pin up precursor-level functionalities on the final carbon. Such strategy successfully fixes more electroactive N(4.28-8.86 wt%) into the resultant carbon microspheres compared with non-pretreated carbon(2.89wt%), as well as achieves broad ion-accessible platforms of 1575-2269 m^(2)/g with preset structural superiorities. As a result, a typical acidic device reveals an outstanding specific capacitance of 383 F/g at 10 mV/s. Taking advantage of a novel LiNO_(3)-PAM polymer electrolyte, the upgraded symmetric device displays the maximum specific capacitance of 229 F/g, along with a boosted energy density of 41.1 Wh/kg at 643.4 W/kg. This work opens up a feasible insight into realizing highly efficient precursor/electrode design toward superior system with outstanding energy/power feature and temperature applicability.
基金supported by the National Key Research and Development Program of China(No.2021YFA2400400)the National Natural Science Foundation of China(Nos.22109058,22122902,22075299,and 21975091)+3 种基金the Fundamental Research Funds for the Central Universities of China(No.20230614)the Jiangxi Provincial Education Department(No.GJJ200338)the Open Fund of Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage(No.SECES2003)Beijing Natural Science Foundation(No.2222089).
文摘Hard carbon derived from biomass is regarded as a promising anode material for sodium-ion batteries(SIBs)because of its low operating potential,high capacity,resource availability,and low cost.However,scientific and technological challenges still exist to prepare hard carbon with a high initial Coulombic efficiency(ICE),an excellent rate capability,and good cycling stability.In this work,we report a self-supported hard carbon electrode from fungus-pretreated basswood with an improved graphitization degree and a low tortuosity.Compared with the hard carbon derived from basswood,the hard carbon electrode from fungus-pretreated basswood has an improved rate capability of 242.3 mAh·g^(−1)at 200 mA·g^(−1)and cycling stability with 93.9%of its capacity retention after 200 cycles at 40 mA·g^(−1),as well as the increased ICE from 84.3%to 88.2%.Additionally,ex-situ X-ray diffraction indicates that Na+adsorption caused the sloping capacity,whereas Na+intercalation between interlayer spacing corresponded to the low potential plateau capacity.This work provides a new perspective for the preparation of high-performance hard carbon and gains the in-depth understanding of Na storage mechanism.
基金supported by the National Key Research and Development Program (2016YFA0202500, 2016YFA0200102)the National Natural Science Foundation of China (21676160, 21825501, 21773264, 21805062, U1801257)+1 种基金Beijing Natural Science Foundation (L172023)Tsinghua University Initiative Scientific Research Program
文摘Li-metal anodes are one of the most promising energy storage systems that can considerably exceed the current technology to meet the ever-increasing demand of power applications. The apparent cycling performances and dendrite challenges of Li-metal anodes are highly influenced by the interface layer on the Li-metal anode because the intrinsic high reactivity of metallic Li results in an inevitable solid-state interface layer between the Li-metal and electrolytes. In this review, we summarize the recent progress on the interfacial chemistry regarding the interactions between electrolytes and ion migration through dynamic interfaces. The critical factors that affect the interface formation for constructing a stable interface with a low resistance are reviewed. Moreover, we review emerging strategies for rationally designing multiple-structured solid-state electrolytes and their interfaces, including the interfacial properties within hybrid electrolytes and the solid electrolyte/electrode interface. Finally, we present scientific issues and perspectives associated with Li-metal anode interfaces toward a practical Li-metal battery.
基金support from the National Natural Science Foundation of China(Nos.61775081,11904127,22075101,and 61904066)Program for the development of Science and Technology of Jilin province(Nos.20200801032GH and 20190103002JH)The Thirteenth Five-Year Program for Science and Technology of Education Department of Jilin Province(Nos.JJKH20200417KJ and JJKH20210440KJ).
文摘Perovskite solar cells present one of the most prominent photovoltaic technologies,yet their stability,and engineering at the molecular level remain challenging.We have demonstrated multifunctional molecules to improve the operating stability of perovskite solar cells while depicting a high-power conversion efficiency.The multifunctional molecule 4-[(trifluoromethyl)sulphanyl]-aniline(4TA)with trifluoromethyl(-CF_(3))and aniline(-NH_(2))moieties is meticulously designed to modulate the perovskite.The-CF_(3) and-NH_(2) functional groups have strong interaction with perovskite to suppress surface defects to improve device stability,as well as obtain large crystal grains through delaying crystallization.Moreover,this-CF_(3) forms a hydrophobic barrier on the surface of the perovskite to prevent cell decomposition.Consequently,the performance of the perovskite solar cells is remarkably improved with the efficiency increased from 18.00% to 20.24%.The perovskite solar cells with multifunctional molecular maintaining 93% of their original efficiency for over 30 days(-55%humidity)in air without device encapsulation,exhibiting a high long-term stability.Moreover,the lead leakage issue of perovskite solar cells has also been suppressed by the built-in 4TA molecule,which is beneficial to environment-friendly application.Ultimately,we believe this multifunctional small molecule provides an available way to achieve high performance perovskite solar cells and the related design strategy is helpful to further develop more versatile materials for perovskite-based optoelectronic devices.
基金This work was supported by the Basic Science Center Project of National Natural Science Foundation of China(No.51788104)the National Natural Science Foundation of China(Nos.21773264,21805062,21703257,21603011)+4 种基金the National Key R&D Program of China(Nos.2016YFA0202500 and 2018YFB0104300)Beijing Natural Science Foundation(No.L172023)the"Transformational Technologies for Clean Energy and Demonstration",Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA 21070300)the Youth Innovation Promotion Association CAS(No.2019033)the Fundamental Research Funds for the Central Universities(No.2018JBM067).
文摘The urgent demands for high-energy-density rechargeable batteries promote a flourishing development of Li metal anode.However,the uncontrollable dendrites growth and serious side reactions severely lirmit its commercial application.Herein,an artificial LiF-rich solid electrolyte interphase(SEl)is constructed at molecular-level using one-step photopolymerization of hexafluorobutyl acrylate based solution,where the LiF is in situ generated during photopolymerization process(denoted as PHALF).The LiF-rich layercomprised flexible polymer matrix and inorganic LiF filler not only ensures intimate contact with Li anode and adapts volume fluctuations during cycling but also regulates Li deposition behavior,enabling it to suppress the dendrite growth and block side reactions between the electrolyte and Li metal.Accordingly,the PHALF-Li anode presents superior stable cycling performance over 500 h at 1 mA·cm^-2 for 1 mA·h·cm^-2 without dendrites growth in carbonate electrolyte.The work provides a novel approach to design and build in situ artificial SEl layer for high-safety and stable Li metal anodes.
基金financially supported by the National Natural Science Foundation of China (Nos. 21207099, 21273162, and 21473122)the Science and Technology Commission of Shanghai Municipality, China (No. 14DZ2261100)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Large Equipment Test Foundation of Tongji University
文摘Magnetically separated and N, S co-doped mesoporous carbon microspheres (NIS-MCMs/Fe304) are fabricated by encapsulating Si02 nanoparticles within N, S-containing polymer microspheres which were prepared using resorcinol/formaldehyde as the carbon source and cysteine as the nitrogen and sulfur co-precursors, followed by the carbonization process, silica template removal, and the introduction of Fe3O4 into the carbon mesopores. N/S-MCMs/Fe3O4 exhibits an enhanced Hg2+ adsorption capacity of 74.5 rag/g, and the adsorbent can be conveniently and rapidly separated from wastewater using an external magnetic field. This study opens up new opportunities to synthesize well- developed, carbon-based materials as an adsorbent for potential applications in the removal of mercury ions from wastewater.
基金financially supported by the National Natural Science Foundation of China(Nos.21905207,21875165,51772216,and 21703161)the Science and Technology Commission of Shanghai Municipality,China(No.14DZ2261100)+1 种基金the Natural Foundation of Hubei Province of China(No.2014CFB782)the Fundamental Research Funds for the Central Universities。
文摘Highly active N,O-doped hierarchical porous carbons(NOCs)are fabricated through the in-situ polymerization and pyrolysis of o-tolidine and p-benzoquinone.As-prepared NOCs have a variety of faradaic-active species(N-6,N-5 and O-I),high ion-accessible platform(1799 m^2/g)and hierarchically micro-meso-macro porous architecture.Consequently,the resultant NOC electrode delivers an advantageous specific capacitance(311 F/g),with a pseudocapacitive contribution of 37%in a threeelectrode configuration,and an enhanced energy output of 18.0 Wh/kg@350 W/kg owing to the enlarged faradaic effect in an aqueous redox-active cell.Besides,a competitive energy density(74.9 Wh/kg)and high-potential durability(87.8%)are achieved in an ionic liquid(EMIMB F4)-assembled device.This study sheds light on a straightforward avenue to optimize the faradaic activity and nanoarchitecture for advanced supercapacitors.
基金financially supported by the National Natural Science Foundation of China(Nos.21273162,21473122,21501135)the Science and Technology of Shanghai Municipality,China(No.14DZ2261100)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Large Equipment Test Foundation of Tongji University
文摘We demonstrate a simple and highly efficient strategy to synthesize MnO2/nitrogen-doped ultramicroporous carbon nanospheres(MnO2/N-UCNs) for supercapacitor application.MnO2/N-UCNs were fabricated via a template-free polymerization of resorcinol/formaldehyde on the surface of phloroglucinol/terephthalaldehyde colloids in the presence of hexamethylenetetramine,followed by carbonization and then a redox reaction between carbons and KMnO4.As-prepared MnO2/N-UCNs exhibits regular ultramicropores,high surface area,nitrogen heteroatom,and high content of MnO2.A typical MnO2/N-UCNs with 57 wt.%MnO2 doping content(denoted as MnO2(57%)/N-UCNs) makes the most use of the synergistic effect between carbons and metal oxides.MnO2(57%)/N-UCNs as a supercapacitor electrode exhibits excellent electrochemical performance such as a high specific capacitance(401 F/g at 1.0 A/g) and excellent charge/discharge stability(86.3%of the initial capacitance after 10,000 cycles at 2.0 A/g) in 1.0 mol/L Na2SO4 electrolyte.The well-designed and high-performance MnO2/N-UCNs highlight the great potential for advanced supercapacitor applications.
基金financially supported by the National Natural Science Foundation of China(Nos.21207099,21273162,21473122)the Science and Technology Commission of Shanghai Municipality,China(No.14DZ2261100)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Large Equipment Test Foundation of Tongji University
文摘A novel zinc tartrate oriented hydrothermal synthesis of microporous carbons was reported. Zinc–organic complex obtained via a simple chelation reaction of zinc ions and tartaric acid is introduced into the networks of resorcinol/formaldehyde polymer under hydrothermal condition. After carbonization process, the resultant microporous carbons achieve high surface area(up to 1255 m^2/g) and large mean pore size(1.99 nm) which guarantee both high specific capacitance(225 F/g at 1.0 A/g) and fast charge/discharge operation(20 A/g) when used as a supercapacitor electrode. Besides, the carbon electrode shows good cycling stability, with 93% capacitance retention at 1.0 A/g after 1000 cycles. The welldesigned and high-performance microporous carbons provide important prospects for supercapacitor applications.
基金financially supported by the National Natural Science Foundation of China (Nos. 21875165, 51772216, 22172111 and 21905207)the Science and Technology Commission of Shanghai Municipality, China (Nos. 20ZR1460300, 14DZ2261100)+2 种基金Anhui University of Science and Technology Introduced Talent Research Startup Fund (No. 13210572)Zhejiang Provincial Natural Science Foundation of China (No. LY19B010003)the Fundamental Research Funds for the Central Universities and the Large Equipment Test Foundation of Tongji University
文摘A facile fabrication strategy is reported to obtain N/O codoped porous carbon nanosheets for pur-pose of ameliorating the charge transfer and accumulation in the concentrated LiTFSI(lithium bis(trifluoromethane sulfonyl)imide)electrolyte.By tunning the feed ratio of comonomers,the porous nanosheet structure is endowed with a significant ion-adsorption surface area(1630 m^(2)/g)and intercon-nected hierarchical porosity;meanwhile,high-level N/O dopants(N:3.58 at%,O:12.91 at%)increase the effective contact area for electrolyte ions,and further facilitate rapid ion/electron transfer.Benefiting from the advantageous features,carbon nanosheets electrode reveal an enhanced specific capacitance(375 F/g)in three-electrode configuration and the H_(2)SO_(4)-based device yields a high gravimetric energy density of 11.4 Wh/kg.Particularly,the ion-diffusion highways in porous carbon nanosheets contribute to the 2.25 V LiTFSI-based symmetric device with a high energy delivery up to 33.1 Wh/kg.This work offers an in-spiring strategy for facile fabrication of carbon nanosheets,and demonstrates their promising application in“water-in-salt”electrolyte-based supercapacitor systems.