With the rapid development of the fields of tumor biology and immunology, tumor immunotherapy has been used in clinical practice and has demonstrated significant therapeutic potential, particularly for treating tumors...With the rapid development of the fields of tumor biology and immunology, tumor immunotherapy has been used in clinical practice and has demonstrated significant therapeutic potential, particularly for treating tumors that do not respond to standard treatment options. Despite its advances, immunotherapy still has limitations, such as poor clinical response rates and differences in individual patient responses, largely because tumor tissues have strong immunosuppressive microenvironments. Many tumors have a tumor microenvironment (TME) that is characterized by hypoxia, low pH, and substantial numbers of immunosuppressive cells, and these are the main factors limiting the efficacy of antitumor immunotherapy. The TME is crucial to the occurrence, growth, and metastasis of tumors. Therefore, numerous studies have been devoted to improving the effects of immunotherapy by remodeling the TME. Effective regulation of the TME and reversal of immunosuppressive conditions are effective strategies for improving tumor immunotherapy. The use of multidrug combinations to improve the TME is an efficient way to enhance antitumor immune efficacy. However, the inability to effectively target drugs decreases therapeutic effects and causes toxic side effects. Nanodrug delivery carriers have the advantageous ability to enhance drug bioavailability and improve drug targeting. Importantly, they can also regulate the TME and deliver large or small therapeutic molecules to decrease the inhibitory effect of the TME on immune cells. Therefore, nanomedicine has great potential for reprogramming immunosuppressive microenvironments and represents a new immunotherapeutic strategy. Therefore, this article reviews strategies for improving the TME and summarizes research on synergistic nanomedicine approaches that enhance the efficacy of tumor immunotherapy.展开更多
本研究在数学史与数学教育(History and Pedagogy of Mathematics,简称HPM)的视角下,将对数的诞生历史融入《对数的概念》教学中,根据学生在理解对数概念时可能遇到的问题,设计出具有针对性的教学案例,帮助学生理解本课的重难点,同时,...本研究在数学史与数学教育(History and Pedagogy of Mathematics,简称HPM)的视角下,将对数的诞生历史融入《对数的概念》教学中,根据学生在理解对数概念时可能遇到的问题,设计出具有针对性的教学案例,帮助学生理解本课的重难点,同时,通过带领学生追溯历史、呈现起源、感知研究的必要性,有利于降低认知负荷,激发学生的学习热情;借助对数概念的演变过程,也能够让学生领略大师的风采、体会大师坚持不懈,勇于创新的精神,进而形成积极向上的情感价值观,最终达成立德树人的根本目标。展开更多
In recent years,subsynchronous resonance(SSR)has frequently occurred in DFIG-connected series-compensated systems.For the analysis and prevention,it is of great importance to achieve wide area monitoring of the incide...In recent years,subsynchronous resonance(SSR)has frequently occurred in DFIG-connected series-compensated systems.For the analysis and prevention,it is of great importance to achieve wide area monitoring of the incident.This paper presents a Hankel dynamic mode decomposition(DMD)method to identify SSR parameters using synchrophasor data.The basic idea is to employ the DMD technique to explore the subspace of Hankel matrices constructed by synchrophasors.It is analytically demonstrated that the subspace of these Hankel matrices is a combination of fundamental and SSR modes.Therefore,the SSR parameters can be calculated once the modal parameter is extracted.Compared with the existing method,the presented work has better dynamic performances as it requires much less data.Thus,it is more suitable for practical cases in which the SSR characteristics are timevarying.The effectiveness and superiority of the proposed method have been verified by both simulations and field data.展开更多
Background:Natural forests in the Hengduan Mountains Region(HDMR)have pivotal ecological functions and provide diverse ecosystem services.Capturing long-term forest disturbance and drivers at a regional scale is cruci...Background:Natural forests in the Hengduan Mountains Region(HDMR)have pivotal ecological functions and provide diverse ecosystem services.Capturing long-term forest disturbance and drivers at a regional scale is crucial for sustainable forest management and biodiversity conservation.Methods:We used 30-m resolution Landsat time series images and the LandTrendr algorithm on the Google Earth Engine cloud platform to map forest disturbances at an annual time scale between 1990 and 2020 and attributed causal agents of forest disturbance,including fire,logging,road construction and insects,using disturbance properties and spectral and topographic variables in the random forest model.Results:The conventional and area-adjusted overall accuracies(OAs)of the forest disturbance map were 92.3% and 97.70%±0.06%,respectively,and the OA of mapping disturbance agents was 85.80%.The estimated disturbed forest area totalled 3313.13 km^(2)(approximately 2.31% of the total forest area in 1990)from 1990 to 2020,with considerable interannual fluctuations and significant regional differences.The predominant disturbance agent was fire,which comprised approximately 83.33% of the forest area disturbance,followed by logging(12.2%),insects(2.4%)and road construction(2.0%).Massive forest disturbances occurred mainly before 2000,and the post-2000 annual disturbance area significantly dropped by 55% compared with the pre-2000 value.Conclusions:This study provided spatially explicit and retrospective information on annual forest disturbance and associated agents in the HDMR.The findings suggest that China’s logging bans in natural forests combined with other forest sustainability programmes have effectively curbed forest disturbances in the HDMR,which has implications for enhancing future forest management and biodiversity conservation.展开更多
We report on the temperature dependence of single-event upsets in the 215–353 K range in a 4M commercial SRAM manufactured in a 0.15-lm CMOS process,utilizing thin film transistors. The experimental results show that...We report on the temperature dependence of single-event upsets in the 215–353 K range in a 4M commercial SRAM manufactured in a 0.15-lm CMOS process,utilizing thin film transistors. The experimental results show that temperature influences the SEU cross section on the rising portion of the cross-sectional curve(such as the chlorine ion incident). SEU cross section increases 257 %when the temperature increases from 215 to 353 K. One of the possible reasons for this is that it is due to the variation in upset voltage induced by changing temperature.展开更多
To store energy from the grid into spiral torsion spring(STS)smoothly and efficiently via PMSM,a multi-objective control problem of flexible load’s vibration,PMSM’s torque ripple,and electrical loss is raised,where ...To store energy from the grid into spiral torsion spring(STS)smoothly and efficiently via PMSM,a multi-objective control problem of flexible load’s vibration,PMSM’s torque ripple,and electrical loss is raised,where the current studies on vibration and torque ripple are mostly addressed separately,not to mention electrical loss.This research attempts to propose a multi-objective integrative control scenario that can simultaneously solve these problems satisfactorily in a unitary nonlinear control framework.Firstly,a dynamic mathematical model of PMSM is built under stator current vector orientation,and then the model of PMSM is combined with the vibration model of STS to establish the overall system model of STS driven by PMSM with considering motor’s electrical loss.Then,a backstepping control principle-based multi-objective integrative control approach is proposed to realize the suppression of flexible load’s vibration and the reduction of PMSM’s torque ripple and electrical loss concurrently.Meanwhile,this research also designs a wide range speed identification method based on the least square algorithm with a forgetting factor.Simulation and experimental results have verified that the proposed integrative control method enables the state variables to track their respective references quickly and accurately,both torque ripple and load vibration are effectively suppressed,and the operating efficiency of the whole system is improved.展开更多
Power transformer is a core equipment of power system, which undertakes the important functions of power transmission and transformation, and its safe and stable operation has great significance to the normal operatio...Power transformer is a core equipment of power system, which undertakes the important functions of power transmission and transformation, and its safe and stable operation has great significance to the normal operation of the whole power system. Due to the complex structure of the transformer, the use of single information for condition-based maintenance (CBM) has certain limitations, with the help of advanced sensor monitoring and information fusion technology, multi-source information is applied to the prognostic and health management (PHM) of power transformer, which is an important way to realize the CBM of power transformer. This paper presents a method which combine deep belief network classifier (DBNC) and D-S evidence theory, and it is applied to the PHM of the large power transformer. The experimental results show that the proposed method has a high correct rate of fault diagnosis for the power transformer with a large number of multi-source data.展开更多
Porous Sr-doped lanthanum manganite–yttria stabilized zirconia(LSM–YSZ)oxygen electrode is prepared by an infiltration process for a reversible solid oxide fuel cell(RSOFC).X-ray diffraction and SEM analysis display...Porous Sr-doped lanthanum manganite–yttria stabilized zirconia(LSM–YSZ)oxygen electrode is prepared by an infiltration process for a reversible solid oxide fuel cell(RSOFC).X-ray diffraction and SEM analysis display that perovskite phase LSM submicro particles are evenly distributed in the porous YSZ matrix.Polarization curves and electrochemical impedance spectra are conducted for the RSOFC at 800 and 850C under both SOFC and SOEC modes.At 850℃,the single cell has the maximum power density of~726 mW/cm^(2)under SOFC mode,and electrolysis voltage of 1.35 V at 1 A/cm^(2)under SOEC mode.Fuel cell/water electrolysis cycle shows the cell has good performance stability during 6 cycles,which exhibits the LSM–YSZ oxygen electrode has high electrochemical performance and good stability.The results suggest that netw ork-like LSM–YSZ electrode made by infiltration process could be a promising oxygen electrode for high temperature RSOFCs.展开更多
Coupled extensional and flexural cylindrical vibrations of a corrugated cylindrical piezoelectric shell consisting of multiple pieces of circular cylindrical surfaces smoothly connected along their generatrix are stud...Coupled extensional and flexural cylindrical vibrations of a corrugated cylindrical piezoelectric shell consisting of multiple pieces of circular cylindrical surfaces smoothly connected along their generatrix are studied. To validate the results for the case of relatively thick shells or equivalently high-frequency modes with short wavelengths, existing analysis is extended by considering shear deformation and rotatory inertia. An analytical solution is obtained. Based on the solution, resonant frequencies and mode shapes are calculated.展开更多
With the explosion in the number of digital images taken every day,the demand for more accurate and visually pleasing images is increasing.However,the images captured by modern cameras are inevitably degraded by noise...With the explosion in the number of digital images taken every day,the demand for more accurate and visually pleasing images is increasing.However,the images captured by modern cameras are inevitably degraded by noise,which leads to deteriorated visual image quality.Therefore,work is required to reduce noise without losing image features(edges,corners,and other sharp structures).So far,researchers have already proposed various methods for decreasing noise.Each method has its own advantages and disadvantages.In this paper,we summarize some important research in the field of image denoising.First,we give the formulation of the image denoising problem,and then we present several image denoising techniques.In addition,we discuss the characteristics of these techniques.Finally,we provide several promising directions for future research.展开更多
Accurate conditions monitoring and early wrong action warnings of relay protection in the Smart Substation is the basic guarantee to realize the normal operation of primary and secondary system of the power grid.At pr...Accurate conditions monitoring and early wrong action warnings of relay protection in the Smart Substation is the basic guarantee to realize the normal operation of primary and secondary system of the power grid.At present,the traditional operation and maintenance monitoring methods of relay protections have poor timeliness,while some automatic monitoring methods have insufficient early warning performance,and lack the online action deduction function independent of the actual device.In this paper,a design method of integrated action deduction system including protection logic reasoning and software and hardware operation condition is proposed.The system can receive real-time operation information of protection online,simulate different types of faults,and output the recording information of sub modules belongs to the action deduction system.It can realize the online monitoring of device faults such as deducing the correctness of setting values at a certain time in the future,giving the wrong action warnings and predicting the probability of them as well,which effectively improves the operation and maintenance efficiency of the secondary system in the intelligent substation.展开更多
In this study,the authors propose a method to calculate the consistency of alpha masking to assess the robustness of the matting algorithm.This study evaluates consistent alpha masks based on the Gaussian-Hermite mome...In this study,the authors propose a method to calculate the consistency of alpha masking to assess the robustness of the matting algorithm.This study evaluates consistent alpha masks based on the Gaussian-Hermite moment in combination with gradient amplitude and gradient direction.The gradient direction describes the appearance and shape of local objects in the image,and the gradient amplitude accurately reflects the contrast and texture changes of small details in the image.They selected Gaussian blur,pretzel noise,and combined noise to destroy the image,and then evaluated the consistency of the original alpha mask and noise alpha mask.To determine the robustness of the matting algorithm,they assessed the degree of consistency of the alpha mask using three different evaluation levels.The experimental results show that noise has a greater impact on the performance of the matting algorithm,which shows a decreasing trend as the noise level in the image deepens.In noisy images,the traditional matting algorithm exhibits better robustness compared to the recently proposed trap matting algorithm.Different matting algorithms present different adaptations to different noises.展开更多
文摘With the rapid development of the fields of tumor biology and immunology, tumor immunotherapy has been used in clinical practice and has demonstrated significant therapeutic potential, particularly for treating tumors that do not respond to standard treatment options. Despite its advances, immunotherapy still has limitations, such as poor clinical response rates and differences in individual patient responses, largely because tumor tissues have strong immunosuppressive microenvironments. Many tumors have a tumor microenvironment (TME) that is characterized by hypoxia, low pH, and substantial numbers of immunosuppressive cells, and these are the main factors limiting the efficacy of antitumor immunotherapy. The TME is crucial to the occurrence, growth, and metastasis of tumors. Therefore, numerous studies have been devoted to improving the effects of immunotherapy by remodeling the TME. Effective regulation of the TME and reversal of immunosuppressive conditions are effective strategies for improving tumor immunotherapy. The use of multidrug combinations to improve the TME is an efficient way to enhance antitumor immune efficacy. However, the inability to effectively target drugs decreases therapeutic effects and causes toxic side effects. Nanodrug delivery carriers have the advantageous ability to enhance drug bioavailability and improve drug targeting. Importantly, they can also regulate the TME and deliver large or small therapeutic molecules to decrease the inhibitory effect of the TME on immune cells. Therefore, nanomedicine has great potential for reprogramming immunosuppressive microenvironments and represents a new immunotherapeutic strategy. Therefore, this article reviews strategies for improving the TME and summarizes research on synergistic nanomedicine approaches that enhance the efficacy of tumor immunotherapy.
文摘本研究在数学史与数学教育(History and Pedagogy of Mathematics,简称HPM)的视角下,将对数的诞生历史融入《对数的概念》教学中,根据学生在理解对数概念时可能遇到的问题,设计出具有针对性的教学案例,帮助学生理解本课的重难点,同时,通过带领学生追溯历史、呈现起源、感知研究的必要性,有利于降低认知负荷,激发学生的学习热情;借助对数概念的演变过程,也能够让学生领略大师的风采、体会大师坚持不懈,勇于创新的精神,进而形成积极向上的情感价值观,最终达成立德树人的根本目标。
基金supported by the China Key Technology Research on Risk Perception of Sub-Synchronous Oscillation of Grid with Large-Scale New Energy Access SGTYHT/21-JS-223.
文摘In recent years,subsynchronous resonance(SSR)has frequently occurred in DFIG-connected series-compensated systems.For the analysis and prevention,it is of great importance to achieve wide area monitoring of the incident.This paper presents a Hankel dynamic mode decomposition(DMD)method to identify SSR parameters using synchrophasor data.The basic idea is to employ the DMD technique to explore the subspace of Hankel matrices constructed by synchrophasors.It is analytically demonstrated that the subspace of these Hankel matrices is a combination of fundamental and SSR modes.Therefore,the SSR parameters can be calculated once the modal parameter is extracted.Compared with the existing method,the presented work has better dynamic performances as it requires much less data.Thus,it is more suitable for practical cases in which the SSR characteristics are timevarying.The effectiveness and superiority of the proposed method have been verified by both simulations and field data.
基金jointly funded by the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK04020103)National Natural Science Foundation of China(41971239)programme for provincial innovative team of the climate change study of the Greater Mekong Subregion(2019HC027).
文摘Background:Natural forests in the Hengduan Mountains Region(HDMR)have pivotal ecological functions and provide diverse ecosystem services.Capturing long-term forest disturbance and drivers at a regional scale is crucial for sustainable forest management and biodiversity conservation.Methods:We used 30-m resolution Landsat time series images and the LandTrendr algorithm on the Google Earth Engine cloud platform to map forest disturbances at an annual time scale between 1990 and 2020 and attributed causal agents of forest disturbance,including fire,logging,road construction and insects,using disturbance properties and spectral and topographic variables in the random forest model.Results:The conventional and area-adjusted overall accuracies(OAs)of the forest disturbance map were 92.3% and 97.70%±0.06%,respectively,and the OA of mapping disturbance agents was 85.80%.The estimated disturbed forest area totalled 3313.13 km^(2)(approximately 2.31% of the total forest area in 1990)from 1990 to 2020,with considerable interannual fluctuations and significant regional differences.The predominant disturbance agent was fire,which comprised approximately 83.33% of the forest area disturbance,followed by logging(12.2%),insects(2.4%)and road construction(2.0%).Massive forest disturbances occurred mainly before 2000,and the post-2000 annual disturbance area significantly dropped by 55% compared with the pre-2000 value.Conclusions:This study provided spatially explicit and retrospective information on annual forest disturbance and associated agents in the HDMR.The findings suggest that China’s logging bans in natural forests combined with other forest sustainability programmes have effectively curbed forest disturbances in the HDMR,which has implications for enhancing future forest management and biodiversity conservation.
基金the National Natural Science Foundation of China(No.11405275)
文摘We report on the temperature dependence of single-event upsets in the 215–353 K range in a 4M commercial SRAM manufactured in a 0.15-lm CMOS process,utilizing thin film transistors. The experimental results show that temperature influences the SEU cross section on the rising portion of the cross-sectional curve(such as the chlorine ion incident). SEU cross section increases 257 %when the temperature increases from 215 to 353 K. One of the possible reasons for this is that it is due to the variation in upset voltage induced by changing temperature.
基金supported in part by the Natural Science Foundation of Hebei Province in China under Grant E2019502163in part by“Double-First Class”Scientific Research Project in School of Electrical and Electronic Engineering of North China Electric Power University under Grant 180718in part by the Headquarter of Science and Technology Project for Sate Grid Corporation of China under Grant KJGW 2018-014.
文摘To store energy from the grid into spiral torsion spring(STS)smoothly and efficiently via PMSM,a multi-objective control problem of flexible load’s vibration,PMSM’s torque ripple,and electrical loss is raised,where the current studies on vibration and torque ripple are mostly addressed separately,not to mention electrical loss.This research attempts to propose a multi-objective integrative control scenario that can simultaneously solve these problems satisfactorily in a unitary nonlinear control framework.Firstly,a dynamic mathematical model of PMSM is built under stator current vector orientation,and then the model of PMSM is combined with the vibration model of STS to establish the overall system model of STS driven by PMSM with considering motor’s electrical loss.Then,a backstepping control principle-based multi-objective integrative control approach is proposed to realize the suppression of flexible load’s vibration and the reduction of PMSM’s torque ripple and electrical loss concurrently.Meanwhile,this research also designs a wide range speed identification method based on the least square algorithm with a forgetting factor.Simulation and experimental results have verified that the proposed integrative control method enables the state variables to track their respective references quickly and accurately,both torque ripple and load vibration are effectively suppressed,and the operating efficiency of the whole system is improved.
文摘Power transformer is a core equipment of power system, which undertakes the important functions of power transmission and transformation, and its safe and stable operation has great significance to the normal operation of the whole power system. Due to the complex structure of the transformer, the use of single information for condition-based maintenance (CBM) has certain limitations, with the help of advanced sensor monitoring and information fusion technology, multi-source information is applied to the prognostic and health management (PHM) of power transformer, which is an important way to realize the CBM of power transformer. This paper presents a method which combine deep belief network classifier (DBNC) and D-S evidence theory, and it is applied to the PHM of the large power transformer. The experimental results show that the proposed method has a high correct rate of fault diagnosis for the power transformer with a large number of multi-source data.
基金This project was sponsored by financial supports from the Major State Basic Research Development Program of China(973 Program,No.2012CB215406).
文摘Porous Sr-doped lanthanum manganite–yttria stabilized zirconia(LSM–YSZ)oxygen electrode is prepared by an infiltration process for a reversible solid oxide fuel cell(RSOFC).X-ray diffraction and SEM analysis display that perovskite phase LSM submicro particles are evenly distributed in the porous YSZ matrix.Polarization curves and electrochemical impedance spectra are conducted for the RSOFC at 800 and 850C under both SOFC and SOEC modes.At 850℃,the single cell has the maximum power density of~726 mW/cm^(2)under SOFC mode,and electrolysis voltage of 1.35 V at 1 A/cm^(2)under SOEC mode.Fuel cell/water electrolysis cycle shows the cell has good performance stability during 6 cycles,which exhibits the LSM–YSZ oxygen electrode has high electrochemical performance and good stability.The results suggest that netw ork-like LSM–YSZ electrode made by infiltration process could be a promising oxygen electrode for high temperature RSOFCs.
基金supported by the National Natural Science Foundation of China(Nos.60302001 and 10872074)Major State Basic Research Development Program of China(973 Program)(No.2009CB724205).
文摘Coupled extensional and flexural cylindrical vibrations of a corrugated cylindrical piezoelectric shell consisting of multiple pieces of circular cylindrical surfaces smoothly connected along their generatrix are studied. To validate the results for the case of relatively thick shells or equivalently high-frequency modes with short wavelengths, existing analysis is extended by considering shear deformation and rotatory inertia. An analytical solution is obtained. Based on the solution, resonant frequencies and mode shapes are calculated.
基金This work is supported by NSFC Joint Fund with Zhejiang Integration of Informatization and Industrialization under Key Project(No.U1609218)the National Nature Science Foundation of China(No.61602277)Shandong Provincial Natural Science Foundation of China(No.ZR2016FQ12).
文摘With the explosion in the number of digital images taken every day,the demand for more accurate and visually pleasing images is increasing.However,the images captured by modern cameras are inevitably degraded by noise,which leads to deteriorated visual image quality.Therefore,work is required to reduce noise without losing image features(edges,corners,and other sharp structures).So far,researchers have already proposed various methods for decreasing noise.Each method has its own advantages and disadvantages.In this paper,we summarize some important research in the field of image denoising.First,we give the formulation of the image denoising problem,and then we present several image denoising techniques.In addition,we discuss the characteristics of these techniques.Finally,we provide several promising directions for future research.
基金supported by the Science and Technology Program of State Grid Corporation of China(No.kj2020–056).
文摘Accurate conditions monitoring and early wrong action warnings of relay protection in the Smart Substation is the basic guarantee to realize the normal operation of primary and secondary system of the power grid.At present,the traditional operation and maintenance monitoring methods of relay protections have poor timeliness,while some automatic monitoring methods have insufficient early warning performance,and lack the online action deduction function independent of the actual device.In this paper,a design method of integrated action deduction system including protection logic reasoning and software and hardware operation condition is proposed.The system can receive real-time operation information of protection online,simulate different types of faults,and output the recording information of sub modules belongs to the action deduction system.It can realize the online monitoring of device faults such as deducing the correctness of setting values at a certain time in the future,giving the wrong action warnings and predicting the probability of them as well,which effectively improves the operation and maintenance efficiency of the secondary system in the intelligent substation.
基金supported by the National Natural Science Foundation of China(61772319,61773244,61976125,61976124)Shandong Natural Science Foundation of China(ZR2017MF049)Yantai Key Research and Development Plan(2019XDHZ081).
文摘In this study,the authors propose a method to calculate the consistency of alpha masking to assess the robustness of the matting algorithm.This study evaluates consistent alpha masks based on the Gaussian-Hermite moment in combination with gradient amplitude and gradient direction.The gradient direction describes the appearance and shape of local objects in the image,and the gradient amplitude accurately reflects the contrast and texture changes of small details in the image.They selected Gaussian blur,pretzel noise,and combined noise to destroy the image,and then evaluated the consistency of the original alpha mask and noise alpha mask.To determine the robustness of the matting algorithm,they assessed the degree of consistency of the alpha mask using three different evaluation levels.The experimental results show that noise has a greater impact on the performance of the matting algorithm,which shows a decreasing trend as the noise level in the image deepens.In noisy images,the traditional matting algorithm exhibits better robustness compared to the recently proposed trap matting algorithm.Different matting algorithms present different adaptations to different noises.