The keen interest in fuel cells and metal-air batteries stimulates a great deal of research on the development of a cost-efficient and high-performance catalyst as an alternative to traditional Pt to boost the sluggis...The keen interest in fuel cells and metal-air batteries stimulates a great deal of research on the development of a cost-efficient and high-performance catalyst as an alternative to traditional Pt to boost the sluggish oxygen reduction reaction(ORR)at the cathode.Herein,we report a facile and scalable strategy for the large-scale preparation of a free-standing and flexible porous atomically dispersed Fe-N-doped carbon microtube(FeSAC/PCMT)sponge.Benefiting from its unique structure that greatly facilitates the catalytic kinetics,mass transport,and electron transfer,our FeSAC/PCMT electrode exhibits excellent performance with an ORR potential of 0.942 V at^(-3) mA cm^(-2).When the FeSAC/PCMT sponge was directly used as an oxygen electrode for liquid-state and flexible solid-state zinc-air batteries,high peak power densities of 183.1 and 58.0 mW cm^(-2) were respectively achieved,better than its powdery counterpart and commercial Pt/C catalyst.Experimental and theoretical investigation results demonstrate that such ultrahigh ORR performance can be attributed to atomically dispersed Fe-N_(5) species in FeSAC/PCMT.This study presents a cost-effective and scalable strategy for the fabrication of highly efficient and flexible oxygen electrodes,provides a significant new insight into the catalytic mechanisms,and helps to realize significant advances in energy devices.展开更多
The continuous and excessive emission of CO_(2)into the atmosphere presents a pressing challenge for global sustainable development.In response,researchers have been devoting significant efforts to develop methods for...The continuous and excessive emission of CO_(2)into the atmosphere presents a pressing challenge for global sustainable development.In response,researchers have been devoting significant efforts to develop methods for converting CO_(2)into valuable chemicals and fuels.These conversions have the potential to establish a closed artificial carbon cycle and provide an alternative resource to depleting fossil fuels.Among the various conversion routes,thermochemical CO_(2)reduction stands out as a promising candidate for industrialization.Within the realm of heterogeneous catalysis,single atom catalysts(SACs)have garnered significant attention.The utilization of SACs offers tremendous potential for enhancing catalytic performance.To achieve optimal activity and selectivity of SACs in CO_(2)thermochemical reduction reactions,a comprehensive understanding of key factors such as single atom metal-support interactions,chemical coordination,and accessibility of active sites is crucial.Despite extensive research in this field,the atomic-scale reaction mechanisms in different chemical environments remain largely unexplored.While SACs have been found successful applications in electrochemical and photochemical CO_(2)reduction reactions,their implementation in thermochemical CO_(2)reduction encounters challenges due to the sintering and/or agglomeration effects that occur at elevated temperatures.In this review,we present a unique approach that combines theoretical understanding with experimental strategies to guide researchers in the design of controlled and thermally stable SACs.By elucidating the underlying principles,we aim to enable the creation of SACs that exhibit stable and efficient catalytic activity for thermochemical CO_(2)reduction reactions.Subsequently,we provide a comprehensive overview of recent literature on noble metal-and transition metal-based SACs for thermochemical CO_(2)reduction.The current review is focused on certain CO_(2)-derived products involving one step reduction only for simplicity and for better understanding the SACs enhancement mechanism.We emphasize various synthesis methods employed and highlight the catalytic activity of these SACs.Finally,we delve into the perspectives and challenges associated with SACs in the context of thermochemical CO_(2)reduction reactions,providing valuable insights for future research endeavor.Through this review,we aim to contribute to the advancement of SACs in the field of thermochemical CO_(2)reduction,shedding light on their potential as effective catalysts and addressing the challenges that need to be overcome for their successful implementation as paradigm shift in catalysis.展开更多
Lithium sulfur(Li-S)batteries hold great promising for high-energy-density batteries,but appear rapid capacity fading due to the lack of overall and elaborated design of both sulfur host and interlayer.Herein,we devel...Lithium sulfur(Li-S)batteries hold great promising for high-energy-density batteries,but appear rapid capacity fading due to the lack of overall and elaborated design of both sulfur host and interlayer.Herein,we developed a novel two-dimensional(2D)hierarchical yolk-shell heterostructure,constructed by a graphene yolk,2D void and outer shell of vertically aligned carbon-mediated MoS2 nanosheets(G@void@MoS2/C),as advanced host-interlayer integrated electrode for Li-S batteries.Notably,the 2D void,with a typical thickness of^80 nm,provided suitable space for loading and confining nano sulfur,and vertically aligned ultrathin MoS2 nanosheets guaranteed enriched catalytically active sites to effectively promote the transition of soluble polysulfides.The conductive graphene yolk and carbon mediated shell sufficiently accelerated electron transport.Therefore,the integrated electrode of G@void@MoS2/C not only exceptionally confined the sulfur/polysulfides in 2D yolk-shell heterostructures,but also achieved catalytic transition of the residual polysulfides dissolved in electrolyte to solid Li2S2/Li2S,both of which synergistically achieved an extremely low capacity fading rate of 0.05%per cycle over 1000 times at 2C,outperforming most reported Mo based cathodes and interlayers for Li-S batteries.2D hierarchical yolkshell heterostructures developed here may shed new insight on elaborated design of integrated electrodes for Li-S batteries.展开更多
Metal-sulfur batteries are recognized as a promising candidate for next generation electrochemical energy storage systems owing to their high theoretical energy density,low cost and environmental friendliness.However,...Metal-sulfur batteries are recognized as a promising candidate for next generation electrochemical energy storage systems owing to their high theoretical energy density,low cost and environmental friendliness.However,sluggish redox kinetics of sulfur species and the shuttle effect lead to large polarization and severe capacity decay.Numerous approaches from physical barrier,chemical adsorption strategies to electrocatalysts have been tried to solve these issues and pushed the rate and cycle performance of sulfur electrodes to higher levels.Most recently,single-atom catalysts(SACs)with high catalytic efficiency have been introduced into metal-sulfur systems to achieve fast redox kinetics of sulfur conversion.In this review,we systematically summarize the current progress on SACs for sulfur electrodes from aspects of synthesis,characterization and electrochemical performance.Challenges and potential solutions for designing SACs for high-performance sulfur electrodes are discussed.展开更多
Self-discharge is a significant issue in electric double layer energy storage, which leads to a rapid voltage drop and low energy efficiency. Here, we attempt to solve this problem by changing the structure of the ele...Self-discharge is a significant issue in electric double layer energy storage, which leads to a rapid voltage drop and low energy efficiency. Here, we attempt to solve this problem by changing the structure of the electric double layer into a de-solvated state, by constructing a nano-scale and ion-conductive solid electrolyte layer on the surface of a carbon electrode. The ion concentration gradient and potential field that drive the self-discharge are greatly restricted inside this electric double layer. Based on this understanding, a high-efficiency graphene-based lithium ion capacitor was built up, in which the self-discharge rate is reduced by 50% and the energy efficiency is doubled. The capacitor also has a high energy density, high power output and long life, and shows promise for practical applications.展开更多
Flexible lithium-ion batteries(LIBs)are critical for the development of next-generation smart electronics.Conversion reaction-based electrodes have been considered promising to construct high energy-density flexible L...Flexible lithium-ion batteries(LIBs)are critical for the development of next-generation smart electronics.Conversion reaction-based electrodes have been considered promising to construct high energy-density flexible LIBs,which satisfy the ever-increasing demand for practical use.However,these electrodes suffer from inferior lithium-storage performance and structural instability during deformation and long-term lithiation/delithiation.These are caused by the sluggish reaction kinetics of active-materials and the superposition of responsive strains originating from the large lithiation-induced stress and applied stress.Here,we propose a stress-release strategy through elastic responses of nested wrinkle texturing of graphene,to achieve high deformability while maintaining structural integrity upon prolonged cycles within high-capacity electrodes.The wrinkles endow the electrode with a robust and flexible network for effective stress release.The resulting electrode shows large reversible stretchability,along with excellent electrochemical performance including high specific capacity,high-rate capability and long-term cycling stability.This strategy offers a new way to obtain high-performance flexible electrodes and can be extended to other energy-storage devices.展开更多
Lots of efforts have been done on different porous carbon materials as cathode for Lithium–sulfur(Li–S)battery. However, seldom researches have been done on the relationship between cathode thickness and electrochem...Lots of efforts have been done on different porous carbon materials as cathode for Lithium–sulfur(Li–S)battery. However, seldom researches have been done on the relationship between cathode thickness and electrochemical performance. Our work investigates the relation between electrochemical performance and cathode thickness with typical porous carbon materials. We explain the phenomenon that only a modest cathode thickness can have the most adequate electrochemical reaction trend through the aspect of thermodynamics(chemical potential) so that the best electrochemical performance can be obtained.Besides, interlayer can remit the shuttle effect but hinder the lithium ion diffusion process simultaneously. And we verify the effect of interlayer thickness on the shuttle effect and lithium ion diffusion process.展开更多
Superconducting wire-networks are paradigms to study Cooper pairing issues,vortex dynamics and arrangements.Recently,emergent low-dimensional crystalline superconductors were reported in the minimal-disorder limit,pro...Superconducting wire-networks are paradigms to study Cooper pairing issues,vortex dynamics and arrangements.Recently,emergent low-dimensional crystalline superconductors were reported in the minimal-disorder limit,providing novel platforms to reveal vortices-related physics.Study on superconducting loops with high-crystallinity is thus currently demanded.Here,we report fabrication and transport measurement of finite square-network based on two-dimensional crystalline superconductor Mo_(2)C.We observe oscillations in the resistance as a function of the magnetic flux through the loops.Resistance dips at both matching field and fractional fillings are revealed.Temperature and current evolutions are carried out in magnetoresistance to study vortex dynamics.The amplitude of oscillation is enhanced due to the interaction between thermally activated vortices and the currents induced in the loops.The driving current reduces the effective activation energy for vortex,giving rise to stronger vortex interaction.Moreover,by the thermally activated vortex creep model,we derive the effective potential barrier for vortex dissipation,which shows well-defined correspondence with structures in magnetoresistance.Our work shows that low-dimensional crystalline superconducting network based on Mo_(2)C possesses pronounced potential in studying the modulation of vortex arrangements and dynamics,paving the way for further investigations on crystalline superconducting network with various configurations.展开更多
Carbon nanotube(CNT)fibers have great promise for constructing multifunctional fabrics with high electrical conductivity,good electro-heating ability,excellent flexibility,and a low density.However,the inter-fiber con...Carbon nanotube(CNT)fibers have great promise for constructing multifunctional fabrics with high electrical conductivity,good electro-heating ability,excellent flexibility,and a low density.However,the inter-fiber contacts in the fabric greatly reduce these advantages and limit their application.Herein,a simple pressure-fusing method to fabricate single-wall CNT(SWCNT)fiber non-woven fabrics(NWFs)that are composed of interconnected SWCNT fibers with fused joints is reported,which have good flexibility,a low density of 0.46 g/cm^(3),a high electrical conductivity of 3.7×10^(5)S/m,and a record high specific electrical conductivity of 803(S·m^(2))/kg.They also showed excellent electrical heating ability,so that a temperature of~160℃was rapidly reached at a low voltage of 2 V.Combined with their low density,the SWCNT fiber NWFs are promising for use as a heating unit for low temperature battery protection and de-icing applications.展开更多
Single wall carbon nanotube(SWCNT)/Si heterojunction photodetectors have the advantages of high photoresponse ability and simple structure,however,their detection wavelength range are usually lower than 1100 nm,which ...Single wall carbon nanotube(SWCNT)/Si heterojunction photodetectors have the advantages of high photoresponse ability and simple structure,however,their detection wavelength range are usually lower than 1100 nm,which limits their application in the infrared band.We report a SWCNT/Cu/Si photodetector with both a high photoresponse and a detection range up to the infrared band by depositing a Cu nanoparticles(NPs)layer between a SWCNT film and a n-Si substrate.It was found that the Cu NPs produce strong surface plasmon resonance(SPR)under laser irradiation,which breaks through the limitation of Si band gap and greatly improves the photoresponse of the SWCNT/Cu/Si photodetector in the near infrared band.The responsivity(R)of the photodetector in the wavelength range of 1850–1200 nm reached 2.2–14.15 mA/W,which is the highest value in the reported plasmon enhanced n-Si based photodetectors,and about 20,000 times higher than that of a SWCNT/Si photodetector.Its R value for 1550 nm wavelength used in optical communications reached~8.2 mA/W,which is 64%higher than the previously reported values of commonly used photodetectors.We attribute the significant increase to the strong SPR and low Schottky barrier of Cu with n-Si,which facilitates the generation and transfer of the carriers.展开更多
A solar steam evaporator provides a sustainable and efficient alternative water purification solution to address the global freshwater shortage.Previous efforts have made significant advances in maximizing its water e...A solar steam evaporator provides a sustainable and efficient alternative water purification solution to address the global freshwater shortage.Previous efforts have made significant advances in maximizing its water evaporation rate,but no single evaporator has all the properties necessary for practical point-of-use application,including a high efficiency for generation of drinkable water,an excellent portability critical for on-site water purification,good washability for mitigating evaporator fouling,and good reusability.We report a strategy to produce a high-performance photothermal material for point-of-use water purification.By simultaneously incorporating graphene and gold particles grown from recycled electronic waste in a mechanically strong sponge,we achieved highly efficient water purification under realistic conditions.In addition to a high evaporation rate(3.55 kg/m^(2)/h under one-sun irradiation)attributed to a control of atomic structure of graphene and the size-dependent surface plasmon resonance of gold nanoparticles,it is portable which can be folded,vacuum compacted,dried and rehydrated without compromising performance.It also allows repeated washing to remove contaminant fouling so that it can be reused.The evaporator transforms various types of contaminated water into drinkable clean water,and can be mounted at any angle to optimize the incident solar irradiation.Furthermore,the assembled steam evaporator device could gain purified water meeting the World Health Organization drinking water standards with a high evaporation rate of 9.36 kg/m^(2)/h under outdoor sunlight.展开更多
Although zinc-air batteries(ZABs)are regarded as one of the most prospective energy storage devices,their practical application has been restricted by poor air electrode performance.Herein,we developed a free-standing...Although zinc-air batteries(ZABs)are regarded as one of the most prospective energy storage devices,their practical application has been restricted by poor air electrode performance.Herein,we developed a free-standing air electrode that is fabricated on the basis of a multifunctional three-dimensional interconnected graphene network.Specifically,a three-dimensional interconnected graphene network with fast mass and electron transport ability,prepared by catalyzing growth of graphene foam on nickel foam and then filling reduced graphene oxide into the pores of graphene foam,is used to anchor iron phthalocyanine molecules with atomic Fe-N_(4)sites for boosting the oxygen reduction during discharging and nanosized FeNi hydroxides for accelerating the oxygen evolution during charging.As a result,the obtained air electrode exhibited an ultra-small electrocatalytic overpotential of 0.603 V for oxygen reactions,a high peak power density of 220.2mWcm^(-2),and a small and stable charge-discharge voltage gap of 0.70 V at 10mA cm^(-2)after 1136 cycles.Furthermore,in situ Raman spectroscopy together with theoretical calculations confirmed that phase transformation of FeNi hydroxides takes place fromα-Ni(OH)_(x)toβ-Ni(OH)_(x)toγ-Ni^((3+δ)+)OOH for the oxygen evolution reaction and Ni is the active center while Fe enhances the activity of Ni active sites.展开更多
Erratum to Nano Research,2023,16(8):11350–11357 https://doi.org/10.1007/s12274-023-5803-y The article"Tannic acid coated single-wall carbon nanotube membranes for the recovery of Au from trace-level solutions&qu...Erratum to Nano Research,2023,16(8):11350–11357 https://doi.org/10.1007/s12274-023-5803-y The article"Tannic acid coated single-wall carbon nanotube membranes for the recovery of Au from trace-level solutions",written by Chunmei Wang et al.,was erroneously originally published electronically on the publisher’s internet portal(currently SpringerLink)on 27 June 2023 with Fig.3(a).In Fig.3(a),the rejection of MWCNT is 38.9%instead of 98.3%.展开更多
Gradient heterostructure is one of fundamental interfaces and provides an effective platform to achieve gradually changed properties in mechanics,optics,and electronics.Among different types of heterostructures,the gr...Gradient heterostructure is one of fundamental interfaces and provides an effective platform to achieve gradually changed properties in mechanics,optics,and electronics.Among different types of heterostructures,the gradient one may provide multiple resistive states and immobilized conductive fila-ments,offering great prospect for fabricating memristors with both high neuromorphic computation capability and repeatability.Here,we invent a memristor based on a homologous gradient heterostructure(HGHS),compris-ing a conductive transition metal dichalcogenide and an insulating homolo-gous metal oxide.Memristor made of Ta–TaS_(x)O_(y)–TaS 2 HGHS exhibits continuous potentiation/depression behavior and repeatable forward/backward scanning in the read-voltage range,which are dominated by multi-ple resistive states and immobilized conductive filaments in HGHS,respec-tively.Moreover,the continuous potentiation/depression behavior makes the memristor serve as a synapse,featuring broad-frequency response(10^(-1)–10^(5) Hz,covering 106 frequency range)and multiple-mode learning(enhanced,depressed,and random-level modes)based on its natural and moti-vated forgetting behaviors.Such HGHS-based memristor also shows good unifor-mity for 5?7 device arrays.Our work paves a way to achieve high-performance integrated memristors for future artificial neuromorphic computation.展开更多
Birefringent optical elements that work in deep ultraviolet(DUV)region become increasingly important these years.However,most of the DUV optical elements have fixed birefringence which is hard to be tuned.Here,we inve...Birefringent optical elements that work in deep ultraviolet(DUV)region become increasingly important these years.However,most of the DUV optical elements have fixed birefringence which is hard to be tuned.Here,we invent a birefringence-tunable optical hydrogel with mechano-birefringence effect in the DUV region,based on two-dimensional(2D)low-cobalt-doped titanate.This 2D oxide material has an optical anisotropy factor of 1.5×10^(-11) C^(2)J^(-1) m-1,larger than maximum value obtained previously,leading to an extremely large specific magneto-optical Cotton-Mouton coefficient of 3.9×10^(6) T^(-2) m-1.The extremely large coefficient enables the fabrication of birefringent hydrogel in a small magnetic field with an ultra-low concentration of 2D oxide material.The hydrogel can stably and continuously modulate 303 nm DUV light with large phase tunability by varying the strain(compression or stretching)from 0 to 50%.Our work opens the door to design and fabricate new proof-of-concept DUV birefringence-tunable element,as demonstrated by optical hydrogels capable of DUV modulation by mechanical stimuli.展开更多
Low-dimensional materials exhibit unique quantum confinement effects and morphologies as a result of their nanoscale size in one or more dimensions,making them exhibit distinctive physical properties compared to bulk ...Low-dimensional materials exhibit unique quantum confinement effects and morphologies as a result of their nanoscale size in one or more dimensions,making them exhibit distinctive physical properties compared to bulk counterparts.Among all low-dimensional materials,due to their atomic level thickness,two-dimensional materials possess extremely large shape anisotropy and consequently are speculated to have large optically anisotropic absorption.In this work,we demonstrate an optoelectronic device based on the combination of two-dimensional material and carbon dot with wide bandgap.High-efficient luminescence of carbon dot and extremely large shape anisotropy(>1500)of two-dimensional material with the wide bandgap of>4 eV cooperatively endow the optoelectronic device with multi-functions of optically anisotropic blue-light emission,visible light modulation,wavelength-dependent ultraviolet-light detection as well as blue fluorescent film assemble.This research opens new avenues for constructing multi-function-integrated optoelectronic devices via the combination of nanomaterials with different dimensions.展开更多
Graphene-based flexible transparent electrodes(FTEs)are promising candidate materials for developing next-generation flexible organic light-emitting diodes(OLEDs).However,the quest for high-efficiency OLEDs is hindere...Graphene-based flexible transparent electrodes(FTEs)are promising candidate materials for developing next-generation flexible organic light-emitting diodes(OLEDs).However,the quest for high-efficiency OLEDs is hindered by the low light-extraction and charge injection efficiencies of graphene electrode.Here,we combine the frustrated Lewis pair doping with nanostructure engineering to obtain high-performance graphene FTE.A p-type dopant aci-nitromethane-tris(pentafluorophenyl)borane(ANBCF)was synthesized and deposited on graphene FTE to form an aperiodic nanostructure,which not only improves the light-extraction but also stably p-dopes graphene to enhance its hole injection.The use of ANBCF-doped graphene as the anode enables high-efficiency flexible green OLEDs with external quantum efficiency(EQE)and power efficiency(PE)out-performing most flexible graphene OLEDs of comparable structure.This study provides a simple and effective pathway to fabricate high-performance graphene FTEs for efficient flexible OLEDs.展开更多
Layered materials with unique structures and symmetries have attracted tremendous interest for constructing 2-dimensional(2D)structures.The weak interlayer interaction renders them to be readily isolated into various ...Layered materials with unique structures and symmetries have attracted tremendous interest for constructing 2-dimensional(2D)structures.The weak interlayer interaction renders them to be readily isolated into various ultrathin nanosheets with exotic properties and diverse applications.In order to enrich the library of 2D materials,extensive progress has been made in the field of ternary layered materials.Consequently,many brand-new materials are derived,which greatly extend the members of 2D realm.In this review,we emphasize the recent progress made in synthesis and exploration of ternary layered materials.We first classify them in terms of stoichiometric ratio and summarize their difference in interlayer interaction,which is of great importance to produce corresponding 2D materials.The compositional and structural characteristics of resultant 2D ternary materials are then discussed so as to realize desired structures and properties.As a new family of 2D materials,we overview the layer-dependent properties and related applications in the fields of electronics,optoelectronics,and energy storage and conversion.The review finally provides a perspective for this rapidly developing field.展开更多
基金supported by the start-up fund from Kunming University of Science and Technology,the National Natural Science Foundation of China (Grants 52102046,51872293,52130209,52072375)Liaoning Revitalization Talents Program (XLYC2002037)Basic Research Project of Natural Science Foundation of Shandong Province,China (ZR2019ZD49).
文摘The keen interest in fuel cells and metal-air batteries stimulates a great deal of research on the development of a cost-efficient and high-performance catalyst as an alternative to traditional Pt to boost the sluggish oxygen reduction reaction(ORR)at the cathode.Herein,we report a facile and scalable strategy for the large-scale preparation of a free-standing and flexible porous atomically dispersed Fe-N-doped carbon microtube(FeSAC/PCMT)sponge.Benefiting from its unique structure that greatly facilitates the catalytic kinetics,mass transport,and electron transfer,our FeSAC/PCMT electrode exhibits excellent performance with an ORR potential of 0.942 V at^(-3) mA cm^(-2).When the FeSAC/PCMT sponge was directly used as an oxygen electrode for liquid-state and flexible solid-state zinc-air batteries,high peak power densities of 183.1 and 58.0 mW cm^(-2) were respectively achieved,better than its powdery counterpart and commercial Pt/C catalyst.Experimental and theoretical investigation results demonstrate that such ultrahigh ORR performance can be attributed to atomically dispersed Fe-N_(5) species in FeSAC/PCMT.This study presents a cost-effective and scalable strategy for the fabrication of highly efficient and flexible oxygen electrodes,provides a significant new insight into the catalytic mechanisms,and helps to realize significant advances in energy devices.
基金support by Khalifa University through CIRA-2020-077 and RC2-2018-024 grants。
文摘The continuous and excessive emission of CO_(2)into the atmosphere presents a pressing challenge for global sustainable development.In response,researchers have been devoting significant efforts to develop methods for converting CO_(2)into valuable chemicals and fuels.These conversions have the potential to establish a closed artificial carbon cycle and provide an alternative resource to depleting fossil fuels.Among the various conversion routes,thermochemical CO_(2)reduction stands out as a promising candidate for industrialization.Within the realm of heterogeneous catalysis,single atom catalysts(SACs)have garnered significant attention.The utilization of SACs offers tremendous potential for enhancing catalytic performance.To achieve optimal activity and selectivity of SACs in CO_(2)thermochemical reduction reactions,a comprehensive understanding of key factors such as single atom metal-support interactions,chemical coordination,and accessibility of active sites is crucial.Despite extensive research in this field,the atomic-scale reaction mechanisms in different chemical environments remain largely unexplored.While SACs have been found successful applications in electrochemical and photochemical CO_(2)reduction reactions,their implementation in thermochemical CO_(2)reduction encounters challenges due to the sintering and/or agglomeration effects that occur at elevated temperatures.In this review,we present a unique approach that combines theoretical understanding with experimental strategies to guide researchers in the design of controlled and thermally stable SACs.By elucidating the underlying principles,we aim to enable the creation of SACs that exhibit stable and efficient catalytic activity for thermochemical CO_(2)reduction reactions.Subsequently,we provide a comprehensive overview of recent literature on noble metal-and transition metal-based SACs for thermochemical CO_(2)reduction.The current review is focused on certain CO_(2)-derived products involving one step reduction only for simplicity and for better understanding the SACs enhancement mechanism.We emphasize various synthesis methods employed and highlight the catalytic activity of these SACs.Finally,we delve into the perspectives and challenges associated with SACs in the context of thermochemical CO_(2)reduction reactions,providing valuable insights for future research endeavor.Through this review,we aim to contribute to the advancement of SACs in the field of thermochemical CO_(2)reduction,shedding light on their potential as effective catalysts and addressing the challenges that need to be overcome for their successful implementation as paradigm shift in catalysis.
基金financially supported by the National Key R@D Program of China (Grants 2016YBF0100100 and 2016YFA0200200)the National Natural Science Foundation of China (Grants 51572259 and 51872283)+5 种基金LiaoNing Revitalization Talents Program (Grant XLYC1807153)the Natural Science Foundation of Liaoning Province (Grant 20180510038)DICP (DICP ZZBS201708, DICP ZZBS201802)DICP&QIBEBT (Grant DICP&QIBEBT UN201702)Dalian National Laboratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL180310, DNL180308)the Fundamental Research Funds for the Central Universities of China (Grant N180503012 and N172410002-16)
文摘Lithium sulfur(Li-S)batteries hold great promising for high-energy-density batteries,but appear rapid capacity fading due to the lack of overall and elaborated design of both sulfur host and interlayer.Herein,we developed a novel two-dimensional(2D)hierarchical yolk-shell heterostructure,constructed by a graphene yolk,2D void and outer shell of vertically aligned carbon-mediated MoS2 nanosheets(G@void@MoS2/C),as advanced host-interlayer integrated electrode for Li-S batteries.Notably,the 2D void,with a typical thickness of^80 nm,provided suitable space for loading and confining nano sulfur,and vertically aligned ultrathin MoS2 nanosheets guaranteed enriched catalytically active sites to effectively promote the transition of soluble polysulfides.The conductive graphene yolk and carbon mediated shell sufficiently accelerated electron transport.Therefore,the integrated electrode of G@void@MoS2/C not only exceptionally confined the sulfur/polysulfides in 2D yolk-shell heterostructures,but also achieved catalytic transition of the residual polysulfides dissolved in electrolyte to solid Li2S2/Li2S,both of which synergistically achieved an extremely low capacity fading rate of 0.05%per cycle over 1000 times at 2C,outperforming most reported Mo based cathodes and interlayers for Li-S batteries.2D hierarchical yolkshell heterostructures developed here may shed new insight on elaborated design of integrated electrodes for Li-S batteries.
基金supported by the National Natural Science Foundation of China(No.51972313,51525206 and 51927803)the Ministry of Science and Technology of China(2016YFA0200100 and 2016YFB0100100)+7 种基金the Strategic Priority Research Program of Chinese Academy of Science(No.XDA22010602)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y201942)the Key Research Program of Chinese Academy of Sciences(No.KGZD-EW-T06)the Special Projects of the Central Government in Guidance of Local Science and Technology Development(No.2020JH6/10500024)the Program for Guangdong Introducing Innovative and Entrepreneurial Teamsthe Development and Reform Commission of Shenzhen Municipality for the development of the “Low-Dimensional Materials and Devices”discipline and the EconomicThe Bureau of Industry and Information Technology of Shenzhen for the“2017 Graphene Manufacturing Innovation Center Project”(No.201901171523)China Petrochemical Cooperation(No.218025)。
文摘Metal-sulfur batteries are recognized as a promising candidate for next generation electrochemical energy storage systems owing to their high theoretical energy density,low cost and environmental friendliness.However,sluggish redox kinetics of sulfur species and the shuttle effect lead to large polarization and severe capacity decay.Numerous approaches from physical barrier,chemical adsorption strategies to electrocatalysts have been tried to solve these issues and pushed the rate and cycle performance of sulfur electrodes to higher levels.Most recently,single-atom catalysts(SACs)with high catalytic efficiency have been introduced into metal-sulfur systems to achieve fast redox kinetics of sulfur conversion.In this review,we systematically summarize the current progress on SACs for sulfur electrodes from aspects of synthesis,characterization and electrochemical performance.Challenges and potential solutions for designing SACs for high-performance sulfur electrodes are discussed.
基金supported by the National Natural Science Foun-dation of China (Nos. 51525206 , 51521091 and 51172239)the Ministry of Science and Technology of China(2016YFA0200100 ,2016YFB0100100)+4 种基金the Strategic Priority Research Program of Chinese Academy of Science (XDA22010602)the Key Research Program of Chinese Academy of Sciences (Grant No. KGZD-EWT06)the Program for Guangdong Introducing Innovative and Enterpreneurial Teamsthe Strategic Priority Research Program of Chinese Academy of Science (No. XDA22010602)the Development and Reform Commission of Shenzhen Municipality for the development of the “Low-Dimensional Materials and Devices” discipline
文摘Self-discharge is a significant issue in electric double layer energy storage, which leads to a rapid voltage drop and low energy efficiency. Here, we attempt to solve this problem by changing the structure of the electric double layer into a de-solvated state, by constructing a nano-scale and ion-conductive solid electrolyte layer on the surface of a carbon electrode. The ion concentration gradient and potential field that drive the self-discharge are greatly restricted inside this electric double layer. Based on this understanding, a high-efficiency graphene-based lithium ion capacitor was built up, in which the self-discharge rate is reduced by 50% and the energy efficiency is doubled. The capacitor also has a high energy density, high power output and long life, and shows promise for practical applications.
基金financial support from the National Natural Science Foundation of China(Nos.52020105010,51927803,51525206)the National Key R&D Program of China(2016YFA0200102 and 2016YFB0100100)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010602)the LiaoNing Revitalization Talents Program(No.XLYC1908015)。
文摘Flexible lithium-ion batteries(LIBs)are critical for the development of next-generation smart electronics.Conversion reaction-based electrodes have been considered promising to construct high energy-density flexible LIBs,which satisfy the ever-increasing demand for practical use.However,these electrodes suffer from inferior lithium-storage performance and structural instability during deformation and long-term lithiation/delithiation.These are caused by the sluggish reaction kinetics of active-materials and the superposition of responsive strains originating from the large lithiation-induced stress and applied stress.Here,we propose a stress-release strategy through elastic responses of nested wrinkle texturing of graphene,to achieve high deformability while maintaining structural integrity upon prolonged cycles within high-capacity electrodes.The wrinkles endow the electrode with a robust and flexible network for effective stress release.The resulting electrode shows large reversible stretchability,along with excellent electrochemical performance including high specific capacity,high-rate capability and long-term cycling stability.This strategy offers a new way to obtain high-performance flexible electrodes and can be extended to other energy-storage devices.
基金supported by the National Key R&D Program of China (2016YFA0200102, 2016YFB0100100, 2014CB932402)the National Natural Science Foundation of China (Nos. 51525206, 51521091, 51372253, U1401243 and 21576159)+4 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences (2015150)the Institute of Metal Research (2015-PY03)the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA09010104)Key Research Program of the Chinese Academy of Sciences (Grant no. KGZD-EW-T06)the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘Lots of efforts have been done on different porous carbon materials as cathode for Lithium–sulfur(Li–S)battery. However, seldom researches have been done on the relationship between cathode thickness and electrochemical performance. Our work investigates the relation between electrochemical performance and cathode thickness with typical porous carbon materials. We explain the phenomenon that only a modest cathode thickness can have the most adequate electrochemical reaction trend through the aspect of thermodynamics(chemical potential) so that the best electrochemical performance can be obtained.Besides, interlayer can remit the shuttle effect but hinder the lithium ion diffusion process simultaneously. And we verify the effect of interlayer thickness on the shuttle effect and lithium ion diffusion process.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974026,11774005,and 51802314)the National Key Research and Development Program of China(Grant No.2017YFA0303304)+1 种基金Science Foundation of Jihua Laboratory(Grant No.2021B0301030003-03)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB30000000)。
文摘Superconducting wire-networks are paradigms to study Cooper pairing issues,vortex dynamics and arrangements.Recently,emergent low-dimensional crystalline superconductors were reported in the minimal-disorder limit,providing novel platforms to reveal vortices-related physics.Study on superconducting loops with high-crystallinity is thus currently demanded.Here,we report fabrication and transport measurement of finite square-network based on two-dimensional crystalline superconductor Mo_(2)C.We observe oscillations in the resistance as a function of the magnetic flux through the loops.Resistance dips at both matching field and fractional fillings are revealed.Temperature and current evolutions are carried out in magnetoresistance to study vortex dynamics.The amplitude of oscillation is enhanced due to the interaction between thermally activated vortices and the currents induced in the loops.The driving current reduces the effective activation energy for vortex,giving rise to stronger vortex interaction.Moreover,by the thermally activated vortex creep model,we derive the effective potential barrier for vortex dissipation,which shows well-defined correspondence with structures in magnetoresistance.Our work shows that low-dimensional crystalline superconducting network based on Mo_(2)C possesses pronounced potential in studying the modulation of vortex arrangements and dynamics,paving the way for further investigations on crystalline superconducting network with various configurations.
基金the National Key R&D Program of China(No.2022YFA1203302)the National Natural Science Foundation of China(Nos.52130209,52188101,and 52072375)+1 种基金Liaoning Revitalization Talents Program(No.XLYC2002037)Basic Research Project of Natural Science Foundation of Shandong Province,China(No.ZR2019ZD49).
文摘Carbon nanotube(CNT)fibers have great promise for constructing multifunctional fabrics with high electrical conductivity,good electro-heating ability,excellent flexibility,and a low density.However,the inter-fiber contacts in the fabric greatly reduce these advantages and limit their application.Herein,a simple pressure-fusing method to fabricate single-wall CNT(SWCNT)fiber non-woven fabrics(NWFs)that are composed of interconnected SWCNT fibers with fused joints is reported,which have good flexibility,a low density of 0.46 g/cm^(3),a high electrical conductivity of 3.7×10^(5)S/m,and a record high specific electrical conductivity of 803(S·m^(2))/kg.They also showed excellent electrical heating ability,so that a temperature of~160℃was rapidly reached at a low voltage of 2 V.Combined with their low density,the SWCNT fiber NWFs are promising for use as a heating unit for low temperature battery protection and de-icing applications.
基金supported by the Ministry of Science and Technology of China(No.2022YFA1203303)the National Natural Science Foundation of China(Nos.52072375,52130209,and 52188101)+1 种基金Liaoning Revitalization Talents Program(No.XLYC2002037)the Basic Research Project of Natural Science Foundation of Shandong Province(No.ZR2019ZD49).
文摘Single wall carbon nanotube(SWCNT)/Si heterojunction photodetectors have the advantages of high photoresponse ability and simple structure,however,their detection wavelength range are usually lower than 1100 nm,which limits their application in the infrared band.We report a SWCNT/Cu/Si photodetector with both a high photoresponse and a detection range up to the infrared band by depositing a Cu nanoparticles(NPs)layer between a SWCNT film and a n-Si substrate.It was found that the Cu NPs produce strong surface plasmon resonance(SPR)under laser irradiation,which breaks through the limitation of Si band gap and greatly improves the photoresponse of the SWCNT/Cu/Si photodetector in the near infrared band.The responsivity(R)of the photodetector in the wavelength range of 1850–1200 nm reached 2.2–14.15 mA/W,which is the highest value in the reported plasmon enhanced n-Si based photodetectors,and about 20,000 times higher than that of a SWCNT/Si photodetector.Its R value for 1550 nm wavelength used in optical communications reached~8.2 mA/W,which is 64%higher than the previously reported values of commonly used photodetectors.We attribute the significant increase to the strong SPR and low Schottky barrier of Cu with n-Si,which facilitates the generation and transfer of the carriers.
基金supported primarily by the Peacock Team Project(KQTD20210811090112002)the National Natural Science Foundation of China(52188101)+2 种基金the Scientific Research Start-up Funds of Tsinghua SIGS(QD2021026C)the Research Fund from Shenzhen International Graduate School,Tsinghua University(JC2021011)Shenzhen Geim Graphene Center。
文摘A solar steam evaporator provides a sustainable and efficient alternative water purification solution to address the global freshwater shortage.Previous efforts have made significant advances in maximizing its water evaporation rate,but no single evaporator has all the properties necessary for practical point-of-use application,including a high efficiency for generation of drinkable water,an excellent portability critical for on-site water purification,good washability for mitigating evaporator fouling,and good reusability.We report a strategy to produce a high-performance photothermal material for point-of-use water purification.By simultaneously incorporating graphene and gold particles grown from recycled electronic waste in a mechanically strong sponge,we achieved highly efficient water purification under realistic conditions.In addition to a high evaporation rate(3.55 kg/m^(2)/h under one-sun irradiation)attributed to a control of atomic structure of graphene and the size-dependent surface plasmon resonance of gold nanoparticles,it is portable which can be folded,vacuum compacted,dried and rehydrated without compromising performance.It also allows repeated washing to remove contaminant fouling so that it can be reused.The evaporator transforms various types of contaminated water into drinkable clean water,and can be mounted at any angle to optimize the incident solar irradiation.Furthermore,the assembled steam evaporator device could gain purified water meeting the World Health Organization drinking water standards with a high evaporation rate of 9.36 kg/m^(2)/h under outdoor sunlight.
基金supported by the National Natural Science Foundation of China(52102046)the Yunnan Fundamental Research Projects(202301AW070016).
文摘Although zinc-air batteries(ZABs)are regarded as one of the most prospective energy storage devices,their practical application has been restricted by poor air electrode performance.Herein,we developed a free-standing air electrode that is fabricated on the basis of a multifunctional three-dimensional interconnected graphene network.Specifically,a three-dimensional interconnected graphene network with fast mass and electron transport ability,prepared by catalyzing growth of graphene foam on nickel foam and then filling reduced graphene oxide into the pores of graphene foam,is used to anchor iron phthalocyanine molecules with atomic Fe-N_(4)sites for boosting the oxygen reduction during discharging and nanosized FeNi hydroxides for accelerating the oxygen evolution during charging.As a result,the obtained air electrode exhibited an ultra-small electrocatalytic overpotential of 0.603 V for oxygen reactions,a high peak power density of 220.2mWcm^(-2),and a small and stable charge-discharge voltage gap of 0.70 V at 10mA cm^(-2)after 1136 cycles.Furthermore,in situ Raman spectroscopy together with theoretical calculations confirmed that phase transformation of FeNi hydroxides takes place fromα-Ni(OH)_(x)toβ-Ni(OH)_(x)toγ-Ni^((3+δ)+)OOH for the oxygen evolution reaction and Ni is the active center while Fe enhances the activity of Ni active sites.
文摘Erratum to Nano Research,2023,16(8):11350–11357 https://doi.org/10.1007/s12274-023-5803-y The article"Tannic acid coated single-wall carbon nanotube membranes for the recovery of Au from trace-level solutions",written by Chunmei Wang et al.,was erroneously originally published electronically on the publisher’s internet portal(currently SpringerLink)on 27 June 2023 with Fig.3(a).In Fig.3(a),the rejection of MWCNT is 38.9%instead of 98.3%.
基金We thank the financial support from the National Science Fund for Distinguished Young Scholars(No.52125309)the National Natural Science Foundation of China(Nos.51991343,52188101,51920105002,and 51991340)+1 种基金Guang-dong Innovative and Entrepreneurial Research Team Pro-gram(No.2017ZT07C341)the Shenzhen Basic Research Program(Nos.JCYJ20200109144616617 and JCYJ20200109144620815)。
文摘Gradient heterostructure is one of fundamental interfaces and provides an effective platform to achieve gradually changed properties in mechanics,optics,and electronics.Among different types of heterostructures,the gradient one may provide multiple resistive states and immobilized conductive fila-ments,offering great prospect for fabricating memristors with both high neuromorphic computation capability and repeatability.Here,we invent a memristor based on a homologous gradient heterostructure(HGHS),compris-ing a conductive transition metal dichalcogenide and an insulating homolo-gous metal oxide.Memristor made of Ta–TaS_(x)O_(y)–TaS 2 HGHS exhibits continuous potentiation/depression behavior and repeatable forward/backward scanning in the read-voltage range,which are dominated by multi-ple resistive states and immobilized conductive filaments in HGHS,respec-tively.Moreover,the continuous potentiation/depression behavior makes the memristor serve as a synapse,featuring broad-frequency response(10^(-1)–10^(5) Hz,covering 106 frequency range)and multiple-mode learning(enhanced,depressed,and random-level modes)based on its natural and moti-vated forgetting behaviors.Such HGHS-based memristor also shows good unifor-mity for 5?7 device arrays.Our work paves a way to achieve high-performance integrated memristors for future artificial neuromorphic computation.
基金support by the National Natural Science Foundation of China(Grants 51920105002,52273311 and 52125309)the Guangdong Innovative and Entrepreneurial Research Team Program(Grant 2017ZT07C341)+2 种基金the Shenzhen Basic Research Project(Grants JCYJ20190809180605522,and WDZC20200819095319002)the National Key R&D Program(Grant 2018YF A0307200)the National Program on Key Basic Research Project of China(Grant 2020JCJQ-ZD-06312).
文摘Birefringent optical elements that work in deep ultraviolet(DUV)region become increasingly important these years.However,most of the DUV optical elements have fixed birefringence which is hard to be tuned.Here,we invent a birefringence-tunable optical hydrogel with mechano-birefringence effect in the DUV region,based on two-dimensional(2D)low-cobalt-doped titanate.This 2D oxide material has an optical anisotropy factor of 1.5×10^(-11) C^(2)J^(-1) m-1,larger than maximum value obtained previously,leading to an extremely large specific magneto-optical Cotton-Mouton coefficient of 3.9×10^(6) T^(-2) m-1.The extremely large coefficient enables the fabrication of birefringent hydrogel in a small magnetic field with an ultra-low concentration of 2D oxide material.The hydrogel can stably and continuously modulate 303 nm DUV light with large phase tunability by varying the strain(compression or stretching)from 0 to 50%.Our work opens the door to design and fabricate new proof-of-concept DUV birefringence-tunable element,as demonstrated by optical hydrogels capable of DUV modulation by mechanical stimuli.
基金supported by the National Natural Science Foundation of China(Grants 52273311 and T2293693)the Guangdong Innovative and Entrepreneurial Research Team Program(No.2017ZT07C341)+1 种基金the Shenzhen Basic Research Project(Grants JCYJ20220818100806014 and JCYJ20190809180605522)the Science and Technology Planning Project of Guangdong Province(Grants 2022A0505050066).
文摘Low-dimensional materials exhibit unique quantum confinement effects and morphologies as a result of their nanoscale size in one or more dimensions,making them exhibit distinctive physical properties compared to bulk counterparts.Among all low-dimensional materials,due to their atomic level thickness,two-dimensional materials possess extremely large shape anisotropy and consequently are speculated to have large optically anisotropic absorption.In this work,we demonstrate an optoelectronic device based on the combination of two-dimensional material and carbon dot with wide bandgap.High-efficient luminescence of carbon dot and extremely large shape anisotropy(>1500)of two-dimensional material with the wide bandgap of>4 eV cooperatively endow the optoelectronic device with multi-functions of optically anisotropic blue-light emission,visible light modulation,wavelength-dependent ultraviolet-light detection as well as blue fluorescent film assemble.This research opens new avenues for constructing multi-function-integrated optoelectronic devices via the combination of nanomaterials with different dimensions.
基金supported by the National Science Foundation of China(Nos.52272051,52172057,52188101 and 52002375)Ministry of Science and Technology of China(No.2021YFA1200804)+3 种基金Chinese Academy of Sciences(Nos.ZDBSLYJSC027 and XDB30000000)Postdoctoral Science Foundation of China(Nos.2020M670812 and 2020TQ0328)Liaoning Revitalization Talents Program(No.XLYC1808013)Guangdong Basic and Applied Basic Research Foundation(No.2020B0301030002).
文摘Graphene-based flexible transparent electrodes(FTEs)are promising candidate materials for developing next-generation flexible organic light-emitting diodes(OLEDs).However,the quest for high-efficiency OLEDs is hindered by the low light-extraction and charge injection efficiencies of graphene electrode.Here,we combine the frustrated Lewis pair doping with nanostructure engineering to obtain high-performance graphene FTE.A p-type dopant aci-nitromethane-tris(pentafluorophenyl)borane(ANBCF)was synthesized and deposited on graphene FTE to form an aperiodic nanostructure,which not only improves the light-extraction but also stably p-dopes graphene to enhance its hole injection.The use of ANBCF-doped graphene as the anode enables high-efficiency flexible green OLEDs with external quantum efficiency(EQE)and power efficiency(PE)out-performing most flexible graphene OLEDs of comparable structure.This study provides a simple and effective pathway to fabricate high-performance graphene FTEs for efficient flexible OLEDs.
基金financially supported by the National Key R&D Program of China (2021YFA1500800)the National Natural Science Foundation of China (51825204, 52072377, and 52188101)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2020192)the Natural Science Foundation of Liaoning Province (2021MS-014)the financial support from the New Cornerstone Science Foundation through the XPLORER PRIZE
基金the National Natural Science Foundation of China(Nos.52188101,22275205,22005284,and 52273311)Shenzhen Basic Research Project(No.JCYJ20200109144616617)+1 种基金the Science and Technology Foundation of Shenzhen(JCYJ20220530154404010)China Postdoctoral Fund(No.2022M713270)。
文摘Layered materials with unique structures and symmetries have attracted tremendous interest for constructing 2-dimensional(2D)structures.The weak interlayer interaction renders them to be readily isolated into various ultrathin nanosheets with exotic properties and diverse applications.In order to enrich the library of 2D materials,extensive progress has been made in the field of ternary layered materials.Consequently,many brand-new materials are derived,which greatly extend the members of 2D realm.In this review,we emphasize the recent progress made in synthesis and exploration of ternary layered materials.We first classify them in terms of stoichiometric ratio and summarize their difference in interlayer interaction,which is of great importance to produce corresponding 2D materials.The compositional and structural characteristics of resultant 2D ternary materials are then discussed so as to realize desired structures and properties.As a new family of 2D materials,we overview the layer-dependent properties and related applications in the fields of electronics,optoelectronics,and energy storage and conversion.The review finally provides a perspective for this rapidly developing field.