Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomen...Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomenon during particle migration, significantly impacts the deep plugging effect. Due to the complexity of the process, few studies have been conducted on this subject. In this paper, we conducted DGP flow experiments using a physical model of a multi-point sandpack under various injection rates and particle sizes. Particle size and concentration tests were performed at each measurement point to investigate the transportation behavior of particles in the deep part of the reservoir. The residual resistance coefficient and concentration changes along the porous media were combined to analyze the plugging performance of DGPs. Furthermore, the particle breakage along their path was revealed by analyzing the changes in particle size along the way. A mathematical model of breakage and concentration changes along the path was established. The results showed that the passage after breakage is a significant migration behavior of particles in porous media. The particles were reduced to less than half of their initial size at the front of the porous media. Breakage is an essential reason for the continuous decreases in particle concentration, size, and residual resistance coefficient. However, the particles can remain in porous media after breakage and play a significant role in deep plugging. Higher injection rates or larger particle sizes resulted in faster breakage along the injection direction, higher degrees of breakage, and faster decreases in residual resistance coefficient along the path. These conditions also led to a weaker deep plugging ability. Smaller particles were more evenly retained along the path, but more particles flowed out of the porous media, resulting in a poor deep plugging effect. The particle size is a function of particle size before injection, transport distance, and different injection parameters(injection rate or the diameter ratio of DGP to throat). Likewise, the particle concentration is a function of initial concentration, transport distance, and different injection parameters. These models can be utilized to optimize particle injection parameters, thereby achieving the goal of fine-tuning oil displacement.展开更多
"Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China..."Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China and the high cost of CO_(2)capture,CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)is gradually emerging into the public's gaze.CO_(2)has good adsorption properties on shale surfaces,but acidic gases can react with shale,so the mechanism of the CO_(2)-rich IWG-water-shale reaction and the change in reservoir properties will determine the stability of geological storage.Therefore,based on the mineral composition of the Longmaxi Formation shale,this study constructs a thermodynamic equilibrium model of water-rock reactions and simulates the regularity of reactions between CO_(2)-rich IWG and shale minerals.The results indicate that CO_(2)consumed 12%after reaction,and impurity gases in the CO_(2)-rich IWG can be dissolved entirely,thus demonstrating the feasibility of treating IWG through water-rock reactions.Since IWG inhibits the dissolution of CO_(2),the optimal composition of CO_(2)-rich IWG is 95%CO_(2)and 5%IWG when CO_(2)geological storage is the main goal.In contrast,when the main goal is the geological storage of total CO_(2)-rich IWG or impurity gas,the optimal CO_(2)-rich IWG composition is 50%CO_(2)and 50%IWG.In the CO_(2)-rich IWG-water-shale reaction,temperature has less influence on the water-rock reaction,while pressure is the most important parameter.SO2 has the greatest impact on water-rock reaction in gas.For minerals,clay minerals such as illite and montmorillonite had a significant effect on water-rock reaction.The overall reaction is dominated by precipitation and the volume of the rock skeleton has increased by 0.74 cm3,resulting in a decrease in shale porosity,which enhances the stability of CO_(2)geological storage to some extent.During the reaction between CO_(2)-rich IWG-water-shale at simulated temperatures and pressures,precipitation is the main reaction,and shale porosity decreases.However,as the reservoir water content increases,the reaction will first dissolve and then precipitate before dissolving again.When the water content is less than 0.0005 kg or greater than 0.4 kg,it will lead to an increase in reservoir porosity,which ultimately reduces the long-term geological storage stability of CO_(2)-rich IWG.展开更多
With the increasing demand for petroleum,shale oil with considerable reserves has become an important part of global oil resources.The shale oil reservoir has a large number of nanopores and a complicated mineral comp...With the increasing demand for petroleum,shale oil with considerable reserves has become an important part of global oil resources.The shale oil reservoir has a large number of nanopores and a complicated mineral composition,and the effect of nanopore confinement and pore type usually makes the effective development of shale oil challenging.For a shale oil reservoir,CO_(2) flooding can effectively reduce the oil viscosity and improve the reservoir properties,which can thus improve the recovery performance.In this study,the method of non-equilibrium molecular dynamics(NEMD)simulation is used to simulate the CO_(2) flooding process in the nanoscale pores of shale oil reservoir.The performance difference between the organic kerogen slit nanopore and four types of inorganic nanopores is discussed.Thus,the effects of nanopore type and displacement velocity on the nanoscale displacement behavior of CO_(2) are analyzed.Results indicate that the CO_(2) flooding process of different inorganic pores is different.In comparison,the displacement efficiency of light oil components is higher,and the transport distance is longer.The intermolecular interaction can significantly affect the CO_(2) displacement behavior in nanopores.The CO_(2) displacement efficiency is shown as montmorillonite,feldspar>quartz>calcite>kerogen.On the other hand,it is found that a lower displacement velocity can benefit the miscibility process between alkane and CO_(2),which is conducive to the overall displacement process of CO_(2).The displacement efficiency can significantly decrease with the increase in displacement velocity.But once the displacement velocity is very high,the strong driving force can promote the alkane to move forward,and the displacement efficiency will recover slightly.This study further reveals the microscopic oil displacement mechanism of CO_(2) in shale nanopores,which is of great significance for the effective development of shale oil reservoirs by using the method of CO_(2) injection.展开更多
Huff-n-puff by water has been conducted to enhance oil recovery after hydraulic fracturing in tight/shale oil reservoirs.However,the mechanisms and capacity are still unclear,which significantly limits the application...Huff-n-puff by water has been conducted to enhance oil recovery after hydraulic fracturing in tight/shale oil reservoirs.However,the mechanisms and capacity are still unclear,which significantly limits the application of this technique.In order to figure out the mechanisms,the whole process of pressurizing,high-pressure soaking,and depressurizing was firstly discussed,and a mechanistic model was established.Subsequently,the simulation model was verified and employed to investigate the significances of high-pressure soaking,the contributions of different mechanisms,and the sensitivity analysis in different scenarios.The results show that high-pressure soaking plays an essential role in oil production by both imbibition and elasticity after hydraulic fracturing.The contribution of imbibition increases as the increase in bottom hole pressure(BHP),interfacial tension,and specific surface area,but slightly decreases as the oil viscosity increases.In addition,it first decreases and then slightly increases with the increase in matrix permeability.The optimal soaking time is linear with the increases of both oil viscosity and BHP and logarithmically declines with the increase in matrix permeability and specific surface area.Moreover,it shows a rising tendency as the interficial tension(IFT)increases.Overall,a general model was achieved to calculate the optimal soaking time.展开更多
Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and ...Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and increase the sweep efficiency.In this paper,the methods of microscale visualized experiment and macroscale 3D experiment are applied to systematically evaluate the areal and vertical sweep efficiencies of different hybrid steam-chemical processes.First,a series of static tests are performed to evaluate the effect of different additives on heavy oil properties.Then,by a series of tests on the microscale visualized model,the areal sweep efficiencies of a baseline steam flooding process and different follow-up hybrid EOR processes are obtained from the collected 2D images.Specifically,they include the hybrid steam-N_(2)process,hybrid steam-N2/foam process,hybrid steam-surfactant process and hybrid steam-N2/foam/surfactant process(N2/foam slug first and steam-surfactant co-injection then).From the results of static tests and visualized micromodels,the pore scale EOR mechanisms and the difference between them can be discussed.For the vertical sweep efficiencies,a macroscale 3D experiment of steam flooding process and a follow-up hybrid EOR process is conducted.Thereafter,combing the macroscale 3D experiment and laboratory-scaled numerical simulation,the vertical and overall sweep efficiencies of different hybrid steam-chemical processes are evaluated.Results indicate that compared with a steam flooding process,the areal sweep efficiency of a hybrid steam-N2process is lower.It is caused by the high mobility ratio in a steam-N2-heavy oil system.By contrast,the enhancement of sweep efficiency by a hybrid steam-N2/foam/surfactant process is the highest.It is because of the high resistance capacity of NCG foam system and the performance of surfactant.Specifically,a surfactant can interact with the oil film in chief zone and reduce the interfacial energy,and thus the oil droplets/films formed during steam injection stage are unlocked.For NCG foam,it can plug the chief steam flow zone and thus the subsequent injected steam is re-directed.Simultaneously,from the collected 2D images,it is also observed that the reservoir microscopic heterogeneity can have an important effect on their sweep efficiencies.From the 3D experiment and laboratory-scaled numerical simulation,it is found that a N2/foam slug can increase the thermal front angle by about 150 and increase the vertical sweep efficiency by about 26%.Among the four processes,a multiple hybrid EOR process(steam-N2/foam/surfactant process) is recommended than the other ones.This paper provides a novel method to systematically evaluate the sweep efficiency of hybrid steam-chemical process and some new insights on the mechanisms of sweep efficiency enhancement are also addressed.It can benefit the expansion of hybrid steam-chemical processes in the post steamed heavy oil reservoirs.展开更多
Ions in brine significantly affect EOR.However,the mechanism of EOR with different brine is still controversial.By Combining Molecular Dynamics(MD)method and Quartz Crystal Microbalance with Dissipation(QCM-D)technolo...Ions in brine significantly affect EOR.However,the mechanism of EOR with different brine is still controversial.By Combining Molecular Dynamics(MD)method and Quartz Crystal Microbalance with Dissipation(QCM-D)technology to analyze ions distribution and the mechanisms in detaching acidic components on the sandstone,an effective method to determine the detaching capacity was established.The results show that detaching capacity is related to ions distribution and hydration capacity.In the oil/brine/rock system,ions far from the rock are favorable for detaching,while ions near the rock are unfavorable for detaching due to ion bridging effect.The hydrogen bond between water and naphthenic acid is key to detaching.Cations strengthen the detaching by forming hydrated ions with water,and the detaching capacity is negatively correlated with hydrated ions radius and positively correlated with the water coordination number.The detaching determination coefficient was established by considering the ions distribution,ions types,and hydration strength,then verified by QCM-D.The brine detaching capacity with different Ca^(2+)/Mg^(2+)ratios was predicted based on MD and detaching determination coefficient,and verified by QCM-D.The optimal Ca^(2+)/Mg^(2+)ratio gave 7:3.This study provides theoretical guidance for targeted regulation of brine composition to improve the recovery of tight sandstone reservoir.展开更多
Motivated by a discrete-time process intended to measure the speed of the spread of contagion in a graph,the burning number b(G)of a graph G,is defined as the smallest integer k for which there are vertices x1,…xk su...Motivated by a discrete-time process intended to measure the speed of the spread of contagion in a graph,the burning number b(G)of a graph G,is defined as the smallest integer k for which there are vertices x1,…xk such that for every vertex u of G,there exists i∈{1,…k}with dG(u,xi)≤k−i,and dG(xi,xj)≥j−i for any 1≤i<j≤k.The graph burning problem has been shown to be NP-complete even for some acyclic graphs with maximum degree three.In this paper,we determine the burning numbers of all short barbells and long barbells,respectively.展开更多
基金supported by the Major National Science and Technology Project(No.2016ZX05054011)。
文摘Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomenon during particle migration, significantly impacts the deep plugging effect. Due to the complexity of the process, few studies have been conducted on this subject. In this paper, we conducted DGP flow experiments using a physical model of a multi-point sandpack under various injection rates and particle sizes. Particle size and concentration tests were performed at each measurement point to investigate the transportation behavior of particles in the deep part of the reservoir. The residual resistance coefficient and concentration changes along the porous media were combined to analyze the plugging performance of DGPs. Furthermore, the particle breakage along their path was revealed by analyzing the changes in particle size along the way. A mathematical model of breakage and concentration changes along the path was established. The results showed that the passage after breakage is a significant migration behavior of particles in porous media. The particles were reduced to less than half of their initial size at the front of the porous media. Breakage is an essential reason for the continuous decreases in particle concentration, size, and residual resistance coefficient. However, the particles can remain in porous media after breakage and play a significant role in deep plugging. Higher injection rates or larger particle sizes resulted in faster breakage along the injection direction, higher degrees of breakage, and faster decreases in residual resistance coefficient along the path. These conditions also led to a weaker deep plugging ability. Smaller particles were more evenly retained along the path, but more particles flowed out of the porous media, resulting in a poor deep plugging effect. The particle size is a function of particle size before injection, transport distance, and different injection parameters(injection rate or the diameter ratio of DGP to throat). Likewise, the particle concentration is a function of initial concentration, transport distance, and different injection parameters. These models can be utilized to optimize particle injection parameters, thereby achieving the goal of fine-tuning oil displacement.
基金The work was supported by the National Natural Science Foundation of China(No.52074316)PetroChina Company Limited(No.2019E-2608).
文摘"Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China and the high cost of CO_(2)capture,CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)is gradually emerging into the public's gaze.CO_(2)has good adsorption properties on shale surfaces,but acidic gases can react with shale,so the mechanism of the CO_(2)-rich IWG-water-shale reaction and the change in reservoir properties will determine the stability of geological storage.Therefore,based on the mineral composition of the Longmaxi Formation shale,this study constructs a thermodynamic equilibrium model of water-rock reactions and simulates the regularity of reactions between CO_(2)-rich IWG and shale minerals.The results indicate that CO_(2)consumed 12%after reaction,and impurity gases in the CO_(2)-rich IWG can be dissolved entirely,thus demonstrating the feasibility of treating IWG through water-rock reactions.Since IWG inhibits the dissolution of CO_(2),the optimal composition of CO_(2)-rich IWG is 95%CO_(2)and 5%IWG when CO_(2)geological storage is the main goal.In contrast,when the main goal is the geological storage of total CO_(2)-rich IWG or impurity gas,the optimal CO_(2)-rich IWG composition is 50%CO_(2)and 50%IWG.In the CO_(2)-rich IWG-water-shale reaction,temperature has less influence on the water-rock reaction,while pressure is the most important parameter.SO2 has the greatest impact on water-rock reaction in gas.For minerals,clay minerals such as illite and montmorillonite had a significant effect on water-rock reaction.The overall reaction is dominated by precipitation and the volume of the rock skeleton has increased by 0.74 cm3,resulting in a decrease in shale porosity,which enhances the stability of CO_(2)geological storage to some extent.During the reaction between CO_(2)-rich IWG-water-shale at simulated temperatures and pressures,precipitation is the main reaction,and shale porosity decreases.However,as the reservoir water content increases,the reaction will first dissolve and then precipitate before dissolving again.When the water content is less than 0.0005 kg or greater than 0.4 kg,it will lead to an increase in reservoir porosity,which ultimately reduces the long-term geological storage stability of CO_(2)-rich IWG.
基金supported by the National Natural Science Foundation of China(No.52004303)Beijing Natural Science Foundation(No.3212020).
文摘With the increasing demand for petroleum,shale oil with considerable reserves has become an important part of global oil resources.The shale oil reservoir has a large number of nanopores and a complicated mineral composition,and the effect of nanopore confinement and pore type usually makes the effective development of shale oil challenging.For a shale oil reservoir,CO_(2) flooding can effectively reduce the oil viscosity and improve the reservoir properties,which can thus improve the recovery performance.In this study,the method of non-equilibrium molecular dynamics(NEMD)simulation is used to simulate the CO_(2) flooding process in the nanoscale pores of shale oil reservoir.The performance difference between the organic kerogen slit nanopore and four types of inorganic nanopores is discussed.Thus,the effects of nanopore type and displacement velocity on the nanoscale displacement behavior of CO_(2) are analyzed.Results indicate that the CO_(2) flooding process of different inorganic pores is different.In comparison,the displacement efficiency of light oil components is higher,and the transport distance is longer.The intermolecular interaction can significantly affect the CO_(2) displacement behavior in nanopores.The CO_(2) displacement efficiency is shown as montmorillonite,feldspar>quartz>calcite>kerogen.On the other hand,it is found that a lower displacement velocity can benefit the miscibility process between alkane and CO_(2),which is conducive to the overall displacement process of CO_(2).The displacement efficiency can significantly decrease with the increase in displacement velocity.But once the displacement velocity is very high,the strong driving force can promote the alkane to move forward,and the displacement efficiency will recover slightly.This study further reveals the microscopic oil displacement mechanism of CO_(2) in shale nanopores,which is of great significance for the effective development of shale oil reservoirs by using the method of CO_(2) injection.
基金This work was supported by the National Natural Science Foundation of China(No.52074316)Science Foundation of China University of Petroleum,Beijing(No.2462018QNXZ01)+2 种基金Open Fund(No.SXCU-201905)of Shaanxi Cooperative Innovation Center of Unconventional Oil and Gas Exploration and Development(Xi'an Shiyou University)National Basic Research Program(No.2015CB250906)National S&T Major Project(No.2017ZX05009004)。
文摘Huff-n-puff by water has been conducted to enhance oil recovery after hydraulic fracturing in tight/shale oil reservoirs.However,the mechanisms and capacity are still unclear,which significantly limits the application of this technique.In order to figure out the mechanisms,the whole process of pressurizing,high-pressure soaking,and depressurizing was firstly discussed,and a mechanistic model was established.Subsequently,the simulation model was verified and employed to investigate the significances of high-pressure soaking,the contributions of different mechanisms,and the sensitivity analysis in different scenarios.The results show that high-pressure soaking plays an essential role in oil production by both imbibition and elasticity after hydraulic fracturing.The contribution of imbibition increases as the increase in bottom hole pressure(BHP),interfacial tension,and specific surface area,but slightly decreases as the oil viscosity increases.In addition,it first decreases and then slightly increases with the increase in matrix permeability.The optimal soaking time is linear with the increases of both oil viscosity and BHP and logarithmically declines with the increase in matrix permeability and specific surface area.Moreover,it shows a rising tendency as the interficial tension(IFT)increases.Overall,a general model was achieved to calculate the optimal soaking time.
基金financially supported by the National Natural Science Foundation of China(U20B6003,52004303)Beijing Natural Science Foundation(3212020)
文摘Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and increase the sweep efficiency.In this paper,the methods of microscale visualized experiment and macroscale 3D experiment are applied to systematically evaluate the areal and vertical sweep efficiencies of different hybrid steam-chemical processes.First,a series of static tests are performed to evaluate the effect of different additives on heavy oil properties.Then,by a series of tests on the microscale visualized model,the areal sweep efficiencies of a baseline steam flooding process and different follow-up hybrid EOR processes are obtained from the collected 2D images.Specifically,they include the hybrid steam-N_(2)process,hybrid steam-N2/foam process,hybrid steam-surfactant process and hybrid steam-N2/foam/surfactant process(N2/foam slug first and steam-surfactant co-injection then).From the results of static tests and visualized micromodels,the pore scale EOR mechanisms and the difference between them can be discussed.For the vertical sweep efficiencies,a macroscale 3D experiment of steam flooding process and a follow-up hybrid EOR process is conducted.Thereafter,combing the macroscale 3D experiment and laboratory-scaled numerical simulation,the vertical and overall sweep efficiencies of different hybrid steam-chemical processes are evaluated.Results indicate that compared with a steam flooding process,the areal sweep efficiency of a hybrid steam-N2process is lower.It is caused by the high mobility ratio in a steam-N2-heavy oil system.By contrast,the enhancement of sweep efficiency by a hybrid steam-N2/foam/surfactant process is the highest.It is because of the high resistance capacity of NCG foam system and the performance of surfactant.Specifically,a surfactant can interact with the oil film in chief zone and reduce the interfacial energy,and thus the oil droplets/films formed during steam injection stage are unlocked.For NCG foam,it can plug the chief steam flow zone and thus the subsequent injected steam is re-directed.Simultaneously,from the collected 2D images,it is also observed that the reservoir microscopic heterogeneity can have an important effect on their sweep efficiencies.From the 3D experiment and laboratory-scaled numerical simulation,it is found that a N2/foam slug can increase the thermal front angle by about 150 and increase the vertical sweep efficiency by about 26%.Among the four processes,a multiple hybrid EOR process(steam-N2/foam/surfactant process) is recommended than the other ones.This paper provides a novel method to systematically evaluate the sweep efficiency of hybrid steam-chemical process and some new insights on the mechanisms of sweep efficiency enhancement are also addressed.It can benefit the expansion of hybrid steam-chemical processes in the post steamed heavy oil reservoirs.
基金financial supports by the National Natural Science Foundation of China(No.52074316)Science Foundation of China University of Petroleum,Beijing(No.2462018QNXZ01)+1 种基金Open Fund(No.SXCU-201905)of Shaanxi Cooperative Innovation Center of Unconventional Oil and Gas Exploration and Development(Xi’an Shiyou University)Major Science and Technology Project of China National Petroleum Corporation(No.2019E-2608)
文摘Ions in brine significantly affect EOR.However,the mechanism of EOR with different brine is still controversial.By Combining Molecular Dynamics(MD)method and Quartz Crystal Microbalance with Dissipation(QCM-D)technology to analyze ions distribution and the mechanisms in detaching acidic components on the sandstone,an effective method to determine the detaching capacity was established.The results show that detaching capacity is related to ions distribution and hydration capacity.In the oil/brine/rock system,ions far from the rock are favorable for detaching,while ions near the rock are unfavorable for detaching due to ion bridging effect.The hydrogen bond between water and naphthenic acid is key to detaching.Cations strengthen the detaching by forming hydrated ions with water,and the detaching capacity is negatively correlated with hydrated ions radius and positively correlated with the water coordination number.The detaching determination coefficient was established by considering the ions distribution,ions types,and hydration strength,then verified by QCM-D.The brine detaching capacity with different Ca^(2+)/Mg^(2+)ratios was predicted based on MD and detaching determination coefficient,and verified by QCM-D.The optimal Ca^(2+)/Mg^(2+)ratio gave 7:3.This study provides theoretical guidance for targeted regulation of brine composition to improve the recovery of tight sandstone reservoir.
基金supported by the National Natural Science Foundation of China(Nos.11971158,12371345,11971196).
文摘Motivated by a discrete-time process intended to measure the speed of the spread of contagion in a graph,the burning number b(G)of a graph G,is defined as the smallest integer k for which there are vertices x1,…xk such that for every vertex u of G,there exists i∈{1,…k}with dG(u,xi)≤k−i,and dG(xi,xj)≥j−i for any 1≤i<j≤k.The graph burning problem has been shown to be NP-complete even for some acyclic graphs with maximum degree three.In this paper,we determine the burning numbers of all short barbells and long barbells,respectively.