Organic electrode materials are promising for batteries.However,the reported organic electrodes are often facing the challenges of low specific capacity,low voltage,poor rate capability and vague charge storage mechan...Organic electrode materials are promising for batteries.However,the reported organic electrodes are often facing the challenges of low specific capacity,low voltage,poor rate capability and vague charge storage mechanisms,etc.Isomers are good platform to investigate the charge storage mechanisms and enhance the performance of batteries,which,however,have not been focused in batteries.Herein,two isomers are reported for batteries.As a result,the isomer tetrathiafulvalene(TTF)could store two monovalent anions reversibly,deriving an average discharge voltage of 1.05 V and a specific capacity of 220 mAh g−1 at a current density of 2 C.On the other hand,the other isomer tetrathianaphthalene could only reversibly store one monovalent anion and upon further oxidation,it would undergo an irreversible solid-state molecular rearrangement to TTF.The molecular rearrangement was confirmed by electrochemical performances,X-ray diffraction patterns,nuclear magnetic resonance spectra,and 1H detected heteronuclear multiple bond correlation spectra.These results suggested the small structural change could lead to a big difference in anion storage,and we hope this work will stimulate more attention to the structural design for boosting the performance of organic batteries.展开更多
The pursuit of high-performance electrode materials is highly desired to meet the demand of batteries with high energy and power density.However,a deep understanding of the charge storage mechanism is always challengi...The pursuit of high-performance electrode materials is highly desired to meet the demand of batteries with high energy and power density.However,a deep understanding of the charge storage mechanism is always challenging,which limits the development of advanced electrode materials.Herein,high-resolution mass spectroscopy(HR-MS)is employed to detect the evolution of organic electrode materials during the redox process and reveal the charge storage mechanism,by using small molecular oxamides as an example,which have ortho-carbonyls and are therefore potential electrochemical active materials for batteries.The HR-MS results adequately proved that the oxamides could reversibly store lithium ions in the voltage window of 1.5–3.8 V.Upon deeper reduction,the oxamides would decompose due to the cleavage of the C–N bonds in oxamide structures,which could be proved by the fragments detected by HR-MS,^(1)H NMR,and the generation of NH_(3)after the reduction of oxamide by Li.This work provides a strategy to deeply understand the charge storage mechanism of organic electrode materials and will stimulate the further development of characterization techniques to reveal the charge storage mechanism for developing high-performance electrode materials.展开更多
Organic electrode materials have exhibited good electrochemical performance in batteries,but their voltages and rate capabilities still require improvement to meet the increasing demand for batteries with high energy ...Organic electrode materials have exhibited good electrochemical performance in batteries,but their voltages and rate capabilities still require improvement to meet the increasing demand for batteries with high energy and power density.Herein,we design and synthesize a branched dihydrophenazine-based polymer(p-TPPZ)as a cathode material for dual-ion batteries(DIBs)through delicate molecular design.Compared with the linear dihydrophenazine-based polymer(p-DPPZ,with a theoretical capacity of 209 mAh g^(−1)),p-TPPZ possessed a higher theoretical capacity of 233 mAh g^(−1)and lower highest occupied molecular orbital energy levels,which resulted in a high actual capacity(169.3 mAh g^(−1)at 0.5 C),an average discharge voltage of 3.65 V(vs.Li+/Li)and a high energy density(618.2 Wh kg^(−1),based on the cathode materials).The branched structure of p-TPPZ led to a larger specific surface area than that of p-DPPZ,which was beneficial for the electrolyte infiltration and fast ionic transport,contributing to the high power density.Due to the fast reaction kinetics,even at a power density of 23,725 W kg^(−1)(40 C),the energy density still reached 474.5 Wh kg^(−1).We also made a detailed investigation of the p-TPPZ cathode’s charge storage mechanism.This work will stimulate the further molecular design to develop organic batteries with both high energy and power density.展开更多
Combustion-generated hydrogen chloride (HCl) is considered to be a very hazardous acid gaseous pollutant. This paper presents a laboratory study on the dry adsorption of HCl. The experiments were conducted in a dual...Combustion-generated hydrogen chloride (HCl) is considered to be a very hazardous acid gaseous pollutant. This paper presents a laboratory study on the dry adsorption of HCl. The experiments were conducted in a dual-layer granular bed filter, at gas temperatures of 500℃-700℃ and n(Ca)/n(Cl)molar ratios of 1.0-5.0 using the silver nitrate titration method by dry adsorbent powders Ca(OH)2. Mainly, the adsorption efficiency of HCI and utilization efficiency of Calcium were studied, by varying relevant factors including n(Ca)/n(Cl), tempera- ture, feeding method, water vapor and CO2. With a relatively higher HCl concentration of 1000ppm, the experimental results revealed that 600℃ may be the optimum temperature for HCl adsorption when optimum n (Ca)/n(Cl) was 2.5 in our tests. The results also demonstrated that the feeding at a constant pressure was more effective, and the HCl adsorption efficiency could rapidly reach over 90% with n(Ca)/n(Cl) = 2.5 at 600℃. Furthermore, the HCl adsorption efficiency was found to be slightly promoted by water vapor, while could be impeded by CO2, and the utilization efficiency of calcium could be up to 74.4% without CO2, while was only 36.8% with CO2 when n(Ca)/n(Cl) was 2.5 at 600℃.展开更多
基金the National Natural Science Foundation of China(52173163 and 22205069)the National 1000-Talents Program,the Innovation Fund of WNLO,the China Postdoctoral Science Foundation(2021TQ0115 and 2021M701302)+1 种基金Hubei province Postdoctoral Innovation Research Post FundWenzhou Science and Technology Program(ZG2022020,G20220022 and G20220026).
文摘Organic electrode materials are promising for batteries.However,the reported organic electrodes are often facing the challenges of low specific capacity,low voltage,poor rate capability and vague charge storage mechanisms,etc.Isomers are good platform to investigate the charge storage mechanisms and enhance the performance of batteries,which,however,have not been focused in batteries.Herein,two isomers are reported for batteries.As a result,the isomer tetrathiafulvalene(TTF)could store two monovalent anions reversibly,deriving an average discharge voltage of 1.05 V and a specific capacity of 220 mAh g−1 at a current density of 2 C.On the other hand,the other isomer tetrathianaphthalene could only reversibly store one monovalent anion and upon further oxidation,it would undergo an irreversible solid-state molecular rearrangement to TTF.The molecular rearrangement was confirmed by electrochemical performances,X-ray diffraction patterns,nuclear magnetic resonance spectra,and 1H detected heteronuclear multiple bond correlation spectra.These results suggested the small structural change could lead to a big difference in anion storage,and we hope this work will stimulate more attention to the structural design for boosting the performance of organic batteries.
基金financialy supported by the National Natural Science Foundation of China(52173163,22279038,and 22205069)the National 1000-Talents Program,the Innovation Fund of WNLO,the Open Fund of the State Key Laboratory of Integrated Optoelectronics(IOSKL2020KF02)+1 种基金Wenzhou Science&Technology Bureau(ZG2022020,G20220022,and G20220026)the China Postdoctoral Science Foundation(2021TQ0115,2021 M701302,and 2020 M672323)
文摘The pursuit of high-performance electrode materials is highly desired to meet the demand of batteries with high energy and power density.However,a deep understanding of the charge storage mechanism is always challenging,which limits the development of advanced electrode materials.Herein,high-resolution mass spectroscopy(HR-MS)is employed to detect the evolution of organic electrode materials during the redox process and reveal the charge storage mechanism,by using small molecular oxamides as an example,which have ortho-carbonyls and are therefore potential electrochemical active materials for batteries.The HR-MS results adequately proved that the oxamides could reversibly store lithium ions in the voltage window of 1.5–3.8 V.Upon deeper reduction,the oxamides would decompose due to the cleavage of the C–N bonds in oxamide structures,which could be proved by the fragments detected by HR-MS,^(1)H NMR,and the generation of NH_(3)after the reduction of oxamide by Li.This work provides a strategy to deeply understand the charge storage mechanism of organic electrode materials and will stimulate the further development of characterization techniques to reveal the charge storage mechanism for developing high-performance electrode materials.
基金This work was financially supported by the National Natural Science Foundation of China(51773071)the National 1000-Talents Program,the Innovation Fund of WNLO,the Fundamental Research Funds for the Central Universities(HUST:2018KFYXKJC018 and 2019kfyRCPY099)+1 种基金the Open Fund of the State Key Laboratory of Integrated Optoelectronics(IOSKL2020KF02)Hubei Provincial Natural Science Foundation of China(2019CFA002)and China Postdoctoral Science Foundation(2020M672323)。
文摘Organic electrode materials have exhibited good electrochemical performance in batteries,but their voltages and rate capabilities still require improvement to meet the increasing demand for batteries with high energy and power density.Herein,we design and synthesize a branched dihydrophenazine-based polymer(p-TPPZ)as a cathode material for dual-ion batteries(DIBs)through delicate molecular design.Compared with the linear dihydrophenazine-based polymer(p-DPPZ,with a theoretical capacity of 209 mAh g^(−1)),p-TPPZ possessed a higher theoretical capacity of 233 mAh g^(−1)and lower highest occupied molecular orbital energy levels,which resulted in a high actual capacity(169.3 mAh g^(−1)at 0.5 C),an average discharge voltage of 3.65 V(vs.Li+/Li)and a high energy density(618.2 Wh kg^(−1),based on the cathode materials).The branched structure of p-TPPZ led to a larger specific surface area than that of p-DPPZ,which was beneficial for the electrolyte infiltration and fast ionic transport,contributing to the high power density.Due to the fast reaction kinetics,even at a power density of 23,725 W kg^(−1)(40 C),the energy density still reached 474.5 Wh kg^(−1).We also made a detailed investigation of the p-TPPZ cathode’s charge storage mechanism.This work will stimulate the further molecular design to develop organic batteries with both high energy and power density.
文摘Combustion-generated hydrogen chloride (HCl) is considered to be a very hazardous acid gaseous pollutant. This paper presents a laboratory study on the dry adsorption of HCl. The experiments were conducted in a dual-layer granular bed filter, at gas temperatures of 500℃-700℃ and n(Ca)/n(Cl)molar ratios of 1.0-5.0 using the silver nitrate titration method by dry adsorbent powders Ca(OH)2. Mainly, the adsorption efficiency of HCI and utilization efficiency of Calcium were studied, by varying relevant factors including n(Ca)/n(Cl), tempera- ture, feeding method, water vapor and CO2. With a relatively higher HCl concentration of 1000ppm, the experimental results revealed that 600℃ may be the optimum temperature for HCl adsorption when optimum n (Ca)/n(Cl) was 2.5 in our tests. The results also demonstrated that the feeding at a constant pressure was more effective, and the HCl adsorption efficiency could rapidly reach over 90% with n(Ca)/n(Cl) = 2.5 at 600℃. Furthermore, the HCl adsorption efficiency was found to be slightly promoted by water vapor, while could be impeded by CO2, and the utilization efficiency of calcium could be up to 74.4% without CO2, while was only 36.8% with CO2 when n(Ca)/n(Cl) was 2.5 at 600℃.