Solid phase extraction is widely used in sample pretreatment,concentration and analysis processes due to high selectivity and suitability for low concentration sample system.In this review,we systematically summarized...Solid phase extraction is widely used in sample pretreatment,concentration and analysis processes due to high selectivity and suitability for low concentration sample system.In this review,we systematically summarized and discussed the development trends of solid phase extraction by bibliometrics method.By analyzing papers output scale,the research and development direction of solid phase extraction technology is prospected.We also give an overview on current strategies of novel solid phase extraction from the separation medium and separation technology.The paper aims to describe the global research profile and the development trends of solid phase extraction,to help researchers to accurately grasp the research trend and to provide support for scientific research institutions to formulate scientific policies and strategic plans.Furthermore,the prospect of the development and application of solid phase extraction is also discussed.展开更多
Developing highly efficient,durable,and non-noble electrocatalysts for the sluggish anodic oxygen evolution reaction(OER)is the pivotal for meeting the practical demand in water splitting.However,the current transitio...Developing highly efficient,durable,and non-noble electrocatalysts for the sluggish anodic oxygen evolution reaction(OER)is the pivotal for meeting the practical demand in water splitting.However,the current transition-metal electrocatalysts still suffer from low activity and durability on account of poor interfacial reaction kinetics.In this work,a facile solid-state synthesis strategy is developed to construct transition-metal sulfides heterostructures(denoted as MS_(2)/NiS_(2),M=Mo or W)for boosting OER electrocatalysis.As a result,MoS2/NiS2 and WS2/NiS2 show lower overpotentials of 300 mV and 320 mV to achieve the current density of 10 mA·cm^(-2),and smaller Tafel slopes of 60 mV.dec^(-1) and 83 mV.dec^(-1)in 1 mol·L^(-1) KOH,respectively,in comparison with the single MoS2,WS2,NiS2,as well as even the benchmark RuO2.The experiments reveal that the designed heterostructures have strong electronic interactions and spontaneously develop a built-in electric field at the heterointerface with uneven charge distribution based on the difference of band structures,which promote interfacial charge transfer,improve absorptivity of OH-,and modulate the energy level more comparable to the OER.Thus,the designed transition-metal sulfides heterostructures exhibit a remarkably high electrocatalytic activity for OER.This study provides a simple strategy to manipulate the heterostructure interface via an energy level engineering method for OER and can be extended to fabricate other heterostructures for various energy-related applications.展开更多
A novel hybrid material consisted of carbon covered Fe_(3)O_(4)nanoparticles and MoS_(2)nanoflower(FCM)was designed and prepared by micelle-assisted hydrothermal methods.Multiple techniques,including X-Ray diffraction...A novel hybrid material consisted of carbon covered Fe_(3)O_(4)nanoparticles and MoS_(2)nanoflower(FCM)was designed and prepared by micelle-assisted hydrothermal methods.Multiple techniques,including X-Ray diffraction(XRD),high-resolution transmission electron microscopy(HRTEM)and X-ray photoelectron spectroscopy(XPS)were employed to characterize it.The results show that FCM has a flower-like morphology with a 330 nm Fe_(3)O_(4)core as well as 70 nm highly crystalline MoS_(2)shell.FCM is superparamagnetic with a saturation magnetization of 35 emu g-1.Then hydrocracking of Canadian bitumen residue(CBR)was applied to estimate its catalytic activity.The results show that FCM exhibits superior catalytic hydrocracking activity compared to bulk MoS_(2)and commercial oil-dispersed Mo(CO)6 by the same Mo loading.Further measurement by elemental analysis,XPS and XRD reveals that the MoS_(2)nanoflower with abundant catalytic active sites and covered carbon layer with anti-coke ability donate to the superior upgrading performance.Besides,the catalysts can be easily recovered by the external magnetic field.This work provides a novel kind magnetic nanocatalyst which is potential for slurry-phase hydrocracking applications.■2020,Institute of Process Engineering,Chinese Academy of Sciences.Publishing services by Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).展开更多
A novel Heck reaction catalyst consisting of a palladium(ll) complex of meso-tetra(p- hydroxyphenyl)porphyrin (MTP) and cross-linked chloromethylated polystyrene microspheres (PMs) was successfully prepared vi...A novel Heck reaction catalyst consisting of a palladium(ll) complex of meso-tetra(p- hydroxyphenyl)porphyrin (MTP) and cross-linked chloromethylated polystyrene microspheres (PMs) was successfully prepared via covalent ether bonds between the chloride groups in the PMs and the hydroxyl groups in MTP. The catalyst was characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). This polystyrene-supported palladium-complex was an efficient heterogeneous catalyst for cross-coupling of aryl iodides with ethyl acrylate. The reaction of iodobenzene and ethyl acrylate under N2 at 100 °C and a catalyst concentration of 0.1% gave a gas chromatography product yield of 99.8%, which is much higher than that achieved using a free palladium(II) complex of MTP as the catalyst (41.3%). The catalyst was recycled up to six times without significant loss of catalytic activity. These results suggest that the immobilized palladium(II) MTP catalyst has potential applications in synthetic and industrial chemistry.展开更多
Background:Cardiovascular(CV)disease is the leading cause of morbidity and mortality in adults with type 2 diabetes(T2D).The aim of this study was to determine the CV risk in Chinese patients with T2D based on the 201...Background:Cardiovascular(CV)disease is the leading cause of morbidity and mortality in adults with type 2 diabetes(T2D).The aim of this study was to determine the CV risk in Chinese patients with T2D based on the 2019 European Society of Cardiology(ESC)and the European Association for the Study of Diabetes(EASD)guidelines on diabetes,pre-diabetes,and CV diseases.Methods:A total of 25,411 patients with T2D,who participated in the study of China Cardiometabolic Registries 3B study,were included in our analysis.We assessed the proportions of patients in each CV risk category according to 2019 ESC/EASD guidelines.Results:Based on the 2019 ESC/EASD guidelines,16,663(65.6%),1895(7.5%),and 152(0.6%)of patients were included in"very high risk,""high risk,"and"moderate risk"categories,respectively.The proportions of patients in each category varied based on age,sex,body mass index,and duration.While 58.7%(9786/16,663)of elderly patients were classified to"very high risk"group,89.6%(3732/4165)of patients with obesity were divided into"very high risk"group.Almost all patients with a duration of diabetes>10 years had"very high risk"or"high risk."However,6701(26.4%)of Chinese T2D patients,who had shorter duration,and one or two risk factors,could not be included in any category(the"unclear risk"category).Conclusions:In China,most patients with T2D have"very high"or"high"CV risk based on 2019 ESC/EASD guidelines.However,the risk of patients in"unclear risk"group needs to be further classified.展开更多
基金financial support of the Natural Science Foundation of Beijing (2194086)the National Natural Science Foundation of China (Nos. 21922814, 21676273, 21961160745, 31961133019 and 21921005)
文摘Solid phase extraction is widely used in sample pretreatment,concentration and analysis processes due to high selectivity and suitability for low concentration sample system.In this review,we systematically summarized and discussed the development trends of solid phase extraction by bibliometrics method.By analyzing papers output scale,the research and development direction of solid phase extraction technology is prospected.We also give an overview on current strategies of novel solid phase extraction from the separation medium and separation technology.The paper aims to describe the global research profile and the development trends of solid phase extraction,to help researchers to accurately grasp the research trend and to provide support for scientific research institutions to formulate scientific policies and strategic plans.Furthermore,the prospect of the development and application of solid phase extraction is also discussed.
基金supported by the National Natural Science Foun-dation of China(21922814,22138012,21961160745,21921005,22178349,22078333,22108281 and 31961133019)Excellent Member in Youth Innovation Promotion Association,Chinese Academy of Sciences(Y202014)Shandong Energy Institute(Grant Number SEI 1202133).
文摘Developing highly efficient,durable,and non-noble electrocatalysts for the sluggish anodic oxygen evolution reaction(OER)is the pivotal for meeting the practical demand in water splitting.However,the current transition-metal electrocatalysts still suffer from low activity and durability on account of poor interfacial reaction kinetics.In this work,a facile solid-state synthesis strategy is developed to construct transition-metal sulfides heterostructures(denoted as MS_(2)/NiS_(2),M=Mo or W)for boosting OER electrocatalysis.As a result,MoS2/NiS2 and WS2/NiS2 show lower overpotentials of 300 mV and 320 mV to achieve the current density of 10 mA·cm^(-2),and smaller Tafel slopes of 60 mV.dec^(-1) and 83 mV.dec^(-1)in 1 mol·L^(-1) KOH,respectively,in comparison with the single MoS2,WS2,NiS2,as well as even the benchmark RuO2.The experiments reveal that the designed heterostructures have strong electronic interactions and spontaneously develop a built-in electric field at the heterointerface with uneven charge distribution based on the difference of band structures,which promote interfacial charge transfer,improve absorptivity of OH-,and modulate the energy level more comparable to the OER.Thus,the designed transition-metal sulfides heterostructures exhibit a remarkably high electrocatalytic activity for OER.This study provides a simple strategy to manipulate the heterostructure interface via an energy level engineering method for OER and can be extended to fabricate other heterostructures for various energy-related applications.
基金financial support:The National Natural Science Foundation of China(21922814,21921005,21676273,21961160745,U1507203,31961133019)the Youth Innovation Promotion Association,CAS(Grant Nos.2016043)+1 种基金Beijing Natural Science Foundation(20194086)China Petroleum Enterprise Cooperation Project(PRIKY17094)。
文摘A novel hybrid material consisted of carbon covered Fe_(3)O_(4)nanoparticles and MoS_(2)nanoflower(FCM)was designed and prepared by micelle-assisted hydrothermal methods.Multiple techniques,including X-Ray diffraction(XRD),high-resolution transmission electron microscopy(HRTEM)and X-ray photoelectron spectroscopy(XPS)were employed to characterize it.The results show that FCM has a flower-like morphology with a 330 nm Fe_(3)O_(4)core as well as 70 nm highly crystalline MoS_(2)shell.FCM is superparamagnetic with a saturation magnetization of 35 emu g-1.Then hydrocracking of Canadian bitumen residue(CBR)was applied to estimate its catalytic activity.The results show that FCM exhibits superior catalytic hydrocracking activity compared to bulk MoS_(2)and commercial oil-dispersed Mo(CO)6 by the same Mo loading.Further measurement by elemental analysis,XPS and XRD reveals that the MoS_(2)nanoflower with abundant catalytic active sites and covered carbon layer with anti-coke ability donate to the superior upgrading performance.Besides,the catalysts can be easily recovered by the external magnetic field.This work provides a novel kind magnetic nanocatalyst which is potential for slurry-phase hydrocracking applications.■2020,Institute of Process Engineering,Chinese Academy of Sciences.Publishing services by Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).
基金financially supported by the National Natural Science Foundation of China(21106162)the National Key Natural Science Foundation of China(21136009)+1 种基金the National High Technology Research and Development Program of China (2009CB219904)the State Key Laboratory of Chemical Engineering(SKL-ChE-11A04)
文摘A novel Heck reaction catalyst consisting of a palladium(ll) complex of meso-tetra(p- hydroxyphenyl)porphyrin (MTP) and cross-linked chloromethylated polystyrene microspheres (PMs) was successfully prepared via covalent ether bonds between the chloride groups in the PMs and the hydroxyl groups in MTP. The catalyst was characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). This polystyrene-supported palladium-complex was an efficient heterogeneous catalyst for cross-coupling of aryl iodides with ethyl acrylate. The reaction of iodobenzene and ethyl acrylate under N2 at 100 °C and a catalyst concentration of 0.1% gave a gas chromatography product yield of 99.8%, which is much higher than that achieved using a free palladium(II) complex of MTP as the catalyst (41.3%). The catalyst was recycled up to six times without significant loss of catalytic activity. These results suggest that the immobilized palladium(II) MTP catalyst has potential applications in synthetic and industrial chemistry.
基金This work was supported by grants from the National Natural Science Foundation of China(Nos.81970708,81970698,and 81900805)the National Key Research and Development Program of China(No.2016YFC1304901)。
文摘Background:Cardiovascular(CV)disease is the leading cause of morbidity and mortality in adults with type 2 diabetes(T2D).The aim of this study was to determine the CV risk in Chinese patients with T2D based on the 2019 European Society of Cardiology(ESC)and the European Association for the Study of Diabetes(EASD)guidelines on diabetes,pre-diabetes,and CV diseases.Methods:A total of 25,411 patients with T2D,who participated in the study of China Cardiometabolic Registries 3B study,were included in our analysis.We assessed the proportions of patients in each CV risk category according to 2019 ESC/EASD guidelines.Results:Based on the 2019 ESC/EASD guidelines,16,663(65.6%),1895(7.5%),and 152(0.6%)of patients were included in"very high risk,""high risk,"and"moderate risk"categories,respectively.The proportions of patients in each category varied based on age,sex,body mass index,and duration.While 58.7%(9786/16,663)of elderly patients were classified to"very high risk"group,89.6%(3732/4165)of patients with obesity were divided into"very high risk"group.Almost all patients with a duration of diabetes>10 years had"very high risk"or"high risk."However,6701(26.4%)of Chinese T2D patients,who had shorter duration,and one or two risk factors,could not be included in any category(the"unclear risk"category).Conclusions:In China,most patients with T2D have"very high"or"high"CV risk based on 2019 ESC/EASD guidelines.However,the risk of patients in"unclear risk"group needs to be further classified.