Seed coat color affects the appearance and commodity quality of mung beans(Vigna radiata L.).The substances that affect mung bean seed coat color are mainly flavonoids,which have important medicinal value.Mapping the ...Seed coat color affects the appearance and commodity quality of mung beans(Vigna radiata L.).The substances that affect mung bean seed coat color are mainly flavonoids,which have important medicinal value.Mapping the seed coat color gene in mung beans would facilitate the development of new varieties and improve their value.In this study,an F2 mapping population consisting of 546 plants was constructed using Jilv9(black seed coat)and BIS9805(green seed coat).Using bulk segregated analysis(BSA)sequencing and kompetitive allele-specific PCR(KASP)markers,the candidate region related to seed coat color was finally narrowed to 0.66 Mb on chromosome(Chr.)4 and included eight candidate genes.Combined transcriptome and metabolome analyses showed that three of the eight candidate genes(LOC106758748,LOC106758747,and LOC106759075)were differentially expressed,which may have caused the differences in flavonoid metabolite content between Jilv9 and BIS9805.These findings can provide a research basis for cloning the genes related to seed coat color and accelerate molecular markerassisted selection breeding in mung beans.展开更多
Cometabolic degradation is currently an effective and extensively way to remove high molecular weight polycyclic aromatic hydrocarbons(HMW-PAHs).Unfortunately,due to low bio-accessibility and high biotoxicity,the come...Cometabolic degradation is currently an effective and extensively way to remove high molecular weight polycyclic aromatic hydrocarbons(HMW-PAHs).Unfortunately,due to low bio-accessibility and high biotoxicity,the cometabolic degradation rate of HMW-PAHs is limited.Glycine-β-cyclodextrin(GCD)was obtained through amino modification ofβ-cyclodextrin(BCD)and added to cometabolic system of phenanthrene(PHE)and pyrene(PYR)to assist PYR biodegradation.Results show that the addition of GCD(100 mg/L)effectively improved the removal rate of PYR(20 mg/L)by 42.3%.GCD appeared to increase the bio-accessibility and reduce the biotoxicity of PHE and PYR,and then promoted the growth of Pseudomonas stutzeri DJP1 and stimulated the elevation of dehydrogenase(DHA)and catechol 12 dioxygenase(C12O)activities.The phthalate metabolic pathway was accelerated,which improved the cometabolic degradation.This study provided a new reference for the cometabolic degradation of HMW-PAHs.展开更多
Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An...Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An optical fiber sensor presented is capable of monitoring the presence of oxygen partial pressure (pO<sub>2</sub>) and pH in the real-time. The sensor is based on fluorescence sensing of polymer immobilized in the oxygen/pH-sensitive membranes and covalently attached to the optical fiber probe. The design of this sensor uses LED as light source, which is an excitation light source, inducing specific wavelengths of fluorescence on the oxygen/pH-sensitive membrane. The intensity and lifetime of fluorescence are related to the pO<sub>2</sub> and pH. So the pO<sub>2</sub> and pH can be measured by the relationship between the pO<sub>2</sub>/pH values and the intensity and lifetime of fluorescence. The signal conditioning system based on DSP and STM32 was used to store and process data, and display test values. The response of the sensor for pO<sub>2</sub> and pH monitoring with nitrogen (N<sub>2</sub>) as a balancing gas in the laboratory was performed. Finally, the oxygen/pH sensing scheme presented in this work is intended for using in biological, medical and environmental applications.展开更多
Nitrate explosive is hard to detect due to lack of aromatic ring and weak interaction with fluorescence probe.More challenging is even to differentiate the dinitrates with multiple nitrate explosives based on photo in...Nitrate explosive is hard to detect due to lack of aromatic ring and weak interaction with fluorescence probe.More challenging is even to differentiate the dinitrates with multiple nitrate explosives based on photo induced electron transfer or aggregation caused fluorescence change mechanism.A highly selective dinitrate explosive probe was designed based on a new strategy-stepwise aggregation of multiple anchored fluorene dimer 8Py-2 F.Compared with its monomer counterpart 2Py-F,8Py-2 F showed a selective and stepwise fluorescence quenching to dinitrate explosives-ethylene glycol(EGDN)and triethylene glycol dinitrate(TEGDN).The limits of detection(LODs)are 2.72μM for TEGDN and 0.46μM for EGDN,which is three orders of magnitude lower than those of 2Py-F.The stepwise quenching process is well matched with the stepwise aggregation process as evidence by scanning electron microscopy(SEM).Nuclear magnetic resonance(NMR)and quantum chemical calculation proved the interaction force between the dinitrate and 8Py-2 F is hydron bonding interaction,and interaction distance is far less than that of the multiple nitrates coming from the flexibility of the chain and steric hinderance,which resulted in a self-adaptive interaction and higher selectivity.The new strategy is beneficial for the differentiation of the chemicals with similar energy level which is difficult to realize via other method,and the new method provides fluorometric probe for dinitrate explosive detection and makes it an ideal candidate for chemical detection and analysis in public safety and environmental monitoring.展开更多
In this contribution, we reported a very simple and small molecule material, 2,5-dimethoxyterephthalaldehyde(DMA). It exhibited a relatively weak fluorescence in solution, while showed a steadily increased green fluor...In this contribution, we reported a very simple and small molecule material, 2,5-dimethoxyterephthalaldehyde(DMA). It exhibited a relatively weak fluorescence in solution, while showed a steadily increased green fluorescence with typical aggregation-induced enhanced emission(AIE) effect for forming a cubic-like microcrystal structure in THF-H2 O mixed solvent.The microcrystals presented significantly higher fluorescence than that of amorphous aggregates. The DMA microcrystals suspension showed a good response to 2,4,6-trinitrophenol(TNP) with a LOD of 1.2×10^(-7) M, which is the best result of TNP detection in aqueous solution. Quantum chemical calculation revealed that DMA is a donor(D)-receptor(A) type molecule with methoxy unit as donor and carbonyl moiety as receptor. Its emission arises from an intramolecular charge transfer(ICT) from methoxy units to carbonyl units. NMR indicated that there is a strong hydrogen bond interaction between DMA and TNP.Hydrogen bond interaction can effectively decrease the intermolecular distance of DMA and TNP, which will increase the efficiency of photoinduced electron transfer(PET) and fluorescence resonance energy transfer(FRET), and hence will be advantageous for its selectivity. The microcrystal induced enhanced emission could be generally used for kinds of target molecules analysis.展开更多
There is no doubt that COVID-19 outbreak is currently the biggest public health threat,which has caused catastrophic con sequences in many countries and regions.As host immunity is key to fighting against virus infect...There is no doubt that COVID-19 outbreak is currently the biggest public health threat,which has caused catastrophic con sequences in many countries and regions.As host immunity is key to fighting against virus infection,it is important to characterize the immunologic changes in the COVID-19 patients,and to explore potential therapeutic candidates.The most efficient ways to end this pandemic are to vaccinate the susceptible population,and to use specific drugs,such as monoclonal antibodies against the viral spike protein(S protein),to treat the affected individuals.Several promising neutralizing antibodies have recently been reported(Cao et al.,2020;Lv et al.,2020).展开更多
基金supported by the National Natural Science Foundation of China(32301928)the Basic Research Program of Shanxi Province,China(20210302124504)+3 种基金the China Agriculture Research System of MOF and MARA-Food Legumes(CARS08-G10)the National Laboratory Project of Coarse Grain Germplasm Resources Innovation and Molecular Breeding,China(K462202040-01)the Ph D of Shanxi Agricultural University Scientific Research Start-up Project,China(2021BQ43)the Scientific Research Project of Shanxi Agricultural University,China(YZGC098)。
文摘Seed coat color affects the appearance and commodity quality of mung beans(Vigna radiata L.).The substances that affect mung bean seed coat color are mainly flavonoids,which have important medicinal value.Mapping the seed coat color gene in mung beans would facilitate the development of new varieties and improve their value.In this study,an F2 mapping population consisting of 546 plants was constructed using Jilv9(black seed coat)and BIS9805(green seed coat).Using bulk segregated analysis(BSA)sequencing and kompetitive allele-specific PCR(KASP)markers,the candidate region related to seed coat color was finally narrowed to 0.66 Mb on chromosome(Chr.)4 and included eight candidate genes.Combined transcriptome and metabolome analyses showed that three of the eight candidate genes(LOC106758748,LOC106758747,and LOC106759075)were differentially expressed,which may have caused the differences in flavonoid metabolite content between Jilv9 and BIS9805.These findings can provide a research basis for cloning the genes related to seed coat color and accelerate molecular markerassisted selection breeding in mung beans.
基金Supported by the National Natural Science Foundation of China(No.51979255)。
文摘Cometabolic degradation is currently an effective and extensively way to remove high molecular weight polycyclic aromatic hydrocarbons(HMW-PAHs).Unfortunately,due to low bio-accessibility and high biotoxicity,the cometabolic degradation rate of HMW-PAHs is limited.Glycine-β-cyclodextrin(GCD)was obtained through amino modification ofβ-cyclodextrin(BCD)and added to cometabolic system of phenanthrene(PHE)and pyrene(PYR)to assist PYR biodegradation.Results show that the addition of GCD(100 mg/L)effectively improved the removal rate of PYR(20 mg/L)by 42.3%.GCD appeared to increase the bio-accessibility and reduce the biotoxicity of PHE and PYR,and then promoted the growth of Pseudomonas stutzeri DJP1 and stimulated the elevation of dehydrogenase(DHA)and catechol 12 dioxygenase(C12O)activities.The phthalate metabolic pathway was accelerated,which improved the cometabolic degradation.This study provided a new reference for the cometabolic degradation of HMW-PAHs.
文摘Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An optical fiber sensor presented is capable of monitoring the presence of oxygen partial pressure (pO<sub>2</sub>) and pH in the real-time. The sensor is based on fluorescence sensing of polymer immobilized in the oxygen/pH-sensitive membranes and covalently attached to the optical fiber probe. The design of this sensor uses LED as light source, which is an excitation light source, inducing specific wavelengths of fluorescence on the oxygen/pH-sensitive membrane. The intensity and lifetime of fluorescence are related to the pO<sub>2</sub> and pH. So the pO<sub>2</sub> and pH can be measured by the relationship between the pO<sub>2</sub>/pH values and the intensity and lifetime of fluorescence. The signal conditioning system based on DSP and STM32 was used to store and process data, and display test values. The response of the sensor for pO<sub>2</sub> and pH monitoring with nitrogen (N<sub>2</sub>) as a balancing gas in the laboratory was performed. Finally, the oxygen/pH sensing scheme presented in this work is intended for using in biological, medical and environmental applications.
基金supported by the research program from the Ministry of Science and Technology(2017YFC0821100)the National Natural Science Foundation of China(61731016,61771460)a grant from the Youth Innovation Promotion Association CAS(2015190)
文摘Nitrate explosive is hard to detect due to lack of aromatic ring and weak interaction with fluorescence probe.More challenging is even to differentiate the dinitrates with multiple nitrate explosives based on photo induced electron transfer or aggregation caused fluorescence change mechanism.A highly selective dinitrate explosive probe was designed based on a new strategy-stepwise aggregation of multiple anchored fluorene dimer 8Py-2 F.Compared with its monomer counterpart 2Py-F,8Py-2 F showed a selective and stepwise fluorescence quenching to dinitrate explosives-ethylene glycol(EGDN)and triethylene glycol dinitrate(TEGDN).The limits of detection(LODs)are 2.72μM for TEGDN and 0.46μM for EGDN,which is three orders of magnitude lower than those of 2Py-F.The stepwise quenching process is well matched with the stepwise aggregation process as evidence by scanning electron microscopy(SEM).Nuclear magnetic resonance(NMR)and quantum chemical calculation proved the interaction force between the dinitrate and 8Py-2 F is hydron bonding interaction,and interaction distance is far less than that of the multiple nitrates coming from the flexibility of the chain and steric hinderance,which resulted in a self-adaptive interaction and higher selectivity.The new strategy is beneficial for the differentiation of the chemicals with similar energy level which is difficult to realize via other method,and the new method provides fluorometric probe for dinitrate explosive detection and makes it an ideal candidate for chemical detection and analysis in public safety and environmental monitoring.
基金supported by the Ministry of Science and Technology (2016YFA0200800)the National Natural Science Foundation of China (51473182, 61731016, 61771460)the Youth Innovation Promotion Association of Chinese Academy of Sciences (2015190)
文摘In this contribution, we reported a very simple and small molecule material, 2,5-dimethoxyterephthalaldehyde(DMA). It exhibited a relatively weak fluorescence in solution, while showed a steadily increased green fluorescence with typical aggregation-induced enhanced emission(AIE) effect for forming a cubic-like microcrystal structure in THF-H2 O mixed solvent.The microcrystals presented significantly higher fluorescence than that of amorphous aggregates. The DMA microcrystals suspension showed a good response to 2,4,6-trinitrophenol(TNP) with a LOD of 1.2×10^(-7) M, which is the best result of TNP detection in aqueous solution. Quantum chemical calculation revealed that DMA is a donor(D)-receptor(A) type molecule with methoxy unit as donor and carbonyl moiety as receptor. Its emission arises from an intramolecular charge transfer(ICT) from methoxy units to carbonyl units. NMR indicated that there is a strong hydrogen bond interaction between DMA and TNP.Hydrogen bond interaction can effectively decrease the intermolecular distance of DMA and TNP, which will increase the efficiency of photoinduced electron transfer(PET) and fluorescence resonance energy transfer(FRET), and hence will be advantageous for its selectivity. The microcrystal induced enhanced emission could be generally used for kinds of target molecules analysis.
基金This work was funded by the National Natural Science Foundation of China(Nos.61822108,62041102 and 62032007 to Q.J.)the Emergency Research Project for COVID-19 of Harbin Institute of Technology(No.2020-001 to Q.J.)the Scientific Research Project Approved by Heilongjiang Provincial Health Committee(No.2019-253 to J.L.).
文摘There is no doubt that COVID-19 outbreak is currently the biggest public health threat,which has caused catastrophic con sequences in many countries and regions.As host immunity is key to fighting against virus infection,it is important to characterize the immunologic changes in the COVID-19 patients,and to explore potential therapeutic candidates.The most efficient ways to end this pandemic are to vaccinate the susceptible population,and to use specific drugs,such as monoclonal antibodies against the viral spike protein(S protein),to treat the affected individuals.Several promising neutralizing antibodies have recently been reported(Cao et al.,2020;Lv et al.,2020).