The existence of defects in perovskite films is a major obstacle that prevents perovskite solar cells (PSCs) from high efficiency and long-term stability. A variety of additives have been introduced into perovskite fi...The existence of defects in perovskite films is a major obstacle that prevents perovskite solar cells (PSCs) from high efficiency and long-term stability. A variety of additives have been introduced into perovskite films for reducing the number of defects. Lewis base-based additive engineering has been considered as an effective way to eliminate defects, especially the defects caused by the uncoordinated Pb^(2+). In this work, for the first time, a bilateral cyano molecule (succinonitrile, SN) which is a commonly used plasticizer in solid electrolyte of solid-state lithium batteries was selected as an additive to modify organic–inorganic hybrid perovskite films in PSCs. SN is featured with two cyano groups (–C≡N) distributing at both terminals of the carbon chain, providing two cross-linking points to interact with perovskites crystals via coordinating with uncoordinated Pb2+ and forming hydrogen bonds with –NH2 groups in perovskite. It was found that the addition of SN into perovskite precursor solution could effectively reduce defects, particularly inhibit the appearance of Pb0 and thus suppress trap-assisted nonradiative charge carrier recombination. As a result, the efficiency of CH_(3)NH_(3)PbI_(3)(Cl) (MAPbI_(3)(Cl))-based PSCs was improved from 18.4% to 20._(3)% with enhanced long-term stability at N2 and humid air atmosphere. This work provides a facile and effective strategy to enhance the PCE and stability of PSCs simultaneously, facilitating the commercialization of PSCs.展开更多
Perovskite solar cells(PSCs) as a rising star in the photovoltaic field have received rapidly increasing attention recently due to the boosting power conversion efficiencies(PCEs) from 3.8% to 25.7% in the last13 year...Perovskite solar cells(PSCs) as a rising star in the photovoltaic field have received rapidly increasing attention recently due to the boosting power conversion efficiencies(PCEs) from 3.8% to 25.7% in the last13 years. Nevertheless, the conventional PSCs with three-dimensional(3D) halide perovskites as light absorbers suffer from inferior PCEs and poor durability under sunlight, high-temperature and humid conditions due to the high defect amount and structural instability of 3D perovskites, respectively. To tackle these crucial issues, lower-dimensional halide perovskites including zero-dimensional(0D), onedimensional(1D), and two-dimensional(2D) perovskites have been employed as efficient passivators to boost the PCEs and durability of 3D-PSCs due to the high structural stability and superior resistance against moisture, heat and sunlight. Therefore, in order to achieve better understanding about the advantages and superiorities of combining low-dimensional perovskites with their 3D counterparts in improving the PCEs and durability of 3D-PSCs, the recent advances in the development and fabrication of mixeddimensional PSCs with 1D/0D perovskites as passivators are summarized and discussed in the review.The superiority of 1D/0D perovskites as passivators over 2D counterparts, the passivation mechanism and the methods of 1D/0D perovskites are also presented and discussed. Furthermore, the rules to choose1D/0D perovskites or relevant spacer cations are also emphasized. On this basis, several specific strategies to design and fabricate mixed-dimensional PSCs with 1D/0D perovskites are presented and discussed.Finally, the crucial challenges and future research directions of mixed-dimensional PSCs with 1D/0D perovskites as passivators are also proposed and discussed. This review will provide some useful insights for the future development of high-efficiency and durable mixed-dimensional PSCs.展开更多
CrTaO_(4)(or Cr_(0.5)Ta_(0.5)O_(2))has been unexpectedly found to play a decisive role in improving the oxidation resistance of Cr and Ta-containing refractory high-entropy alloys(RHEAs).This rarely encountered comple...CrTaO_(4)(or Cr_(0.5)Ta_(0.5)O_(2))has been unexpectedly found to play a decisive role in improving the oxidation resistance of Cr and Ta-containing refractory high-entropy alloys(RHEAs).This rarely encountered complex oxide can effectively prevent the outward diffusion of metal cations from the RHEAs.Moreover,the oxidation kinetics of CrTaO_(4)-forming RHEAs is comparable to that of the well-known oxidation resistant Cr_(2)O_(3)-and Al_(2)O_(3)-forming Ni-based superalloys.However,CrTaO_(4)has been ignored and its mechanical and thermal properties have yet to be studied.To fill this research gap and explore the untapped potential for its applications,here we report for the first time the microstructure,mechanical and thermal properties of CrTaO_(4)prepared by hot-press sintering of solid-state reaction synthesized powders.Using the HAADF and ABF-STEM techniques,rutile crystal structure was confirmed and short range ordering was directly observed.In addition,segregation of Ta and Cr was identified.Intriguingly,CrTaO_(4)exhibits elastic/mechanical properties similar to those of yttria stabilized zirconia(YSZ)with Young’s modulus,shear modulus,and bulk modulus of 268,107,and 181 GPa,respectively,and Vickers hardness,flexural strength,and fracture toughness of 12.2±0.44 GPa,142±14 MPa,and 1.87±0.074 MPa·m^(1/2).The analogous elastic/mechanical properties of CrTaO_(4)to those of YSZ has spurred inquiries to lucrative leverage it as a new thermal barrier material.The measured melting point of CrTaO_(4)is 2103±20 K.The anisotropic thermal expansion coefficients areα_(a)=(5.68±0.10)×10^(-6)K^(-1),α_(c)=(7.81±0.11)×10^(-6)K^(-1),with an average thermal expansion coefficient of(6.39±0.11)×10^(-6)K^(-1).The room temperature thermal conductivity of CrTaO_(4)is 1.31 W·m^(-1)·K^(-1)and declines to 0.66 W·m^(-1)·K^(-1)at 1473 K,which are lower than most of the currently well-known thermal barrier materials.From the perspective of matched thermal expansion coefficient,CrTaO_(4)pertains to an eligible thermal barrier material for refractory metals such as Ta,Nb,and RHEAs,and ultrahigh temperature ceramics.As such,this work not only provides fundamental microstructure,elastic/mechanical and thermal properties that are instructive for understanding the protectiveness displayed by CrTaO_(4)on top of RHEAs but also outreaches its untapped potential as a new thermal barrier material.展开更多
Unraveling the lineage relationships of all descendants from a zygote is fundamental to advancing our understanding of developmental and stem cell biology.However,existing cell barcoding technologies in zebrafish lack...Unraveling the lineage relationships of all descendants from a zygote is fundamental to advancing our understanding of developmental and stem cell biology.However,existing cell barcoding technologies in zebrafish lack the resolution to capture the majority of cell divisions during embryogenesis.A recently developed method,a substitution mutation-aided lineage-tracing system(SMALT),successfully reconstructed high-resolution cell phylogenetic trees for Drosophila melanogaster.Here,we implement the SMALT system in zebrafish,recording a median of 14 substitution mutations on a one-kilobase-pair barcoding sequence for one-day post-fertilization embryos.Leveraging this system,we reconstruct four cell lineage trees for zebrafish fin cells,encompassing both original and regenerated fin.Each tree consists of hundreds of internal nodes with a median bootstrap support of 99%.Analysis of the obtained cell lineage trees reveals that regenerated fin cells mainly originate from cells in the same part of the fins.Through multiple times sampling germ cells from the same individual,we show the stability of the germ cell pool and the early separation of germ cell and somatic cell progenitors.Our system offers the potential for reconstructing high-quality cell phylogenies across diverse tissues,providing valuable insights into development and disease in zebrafish.展开更多
Thermal barrier coating(TBC) materials play important roles in gas turbine engines to protect the Nibased super-alloys from the high temperature airflow damage. High melting point, ultra-low thermal conductivity, larg...Thermal barrier coating(TBC) materials play important roles in gas turbine engines to protect the Nibased super-alloys from the high temperature airflow damage. High melting point, ultra-low thermal conductivity, large thermal expansion coefficient, excellent damage tolerance and moderate mechanical properties are the main requirements of promising TBC materials. In order to improve the efficiency of jet and/or gas turbine engines, which is the key of improved thrust-to-weight ratios and the energysaving, significant efforts have been made on searching for enhanced TBC materials. Theoretically, density functional theory has been successfully used in scanning the structure and properties of materials, and at the same time predicting the mechanical and thermal properties of promising TBC materials for high and ultrahigh temperature applications, which are validated by subsequent experiments. Experimentally,doping and/or alloying are also widely applied to further decrease their thermal conductivities. Now, the strategy through combining theoretical calculations and experiments on searching for next generation thermal insulator materials is widely adopted. In this review, the common used techniques and the recent advantages on searching for promising TBC materials in both theory and experiments are summarized.展开更多
High-entropy ceramics (HECs) are solid solutions of inorganic compounds with one or more Wyckoff sites shared by equal or near-equal atomic ratios of multi-principal elements.Although in the infant stage,the emerging ...High-entropy ceramics (HECs) are solid solutions of inorganic compounds with one or more Wyckoff sites shared by equal or near-equal atomic ratios of multi-principal elements.Although in the infant stage,the emerging of this new family of materials has brought new opportunities for material design and property tailoring.Distinct from metals,the diversity in crystal structure and electronic structure of ceramics provides huge space for properties tuning through band structure engineering and phonon engineering.Aside from strengthening,hardening,and low thermal conductivity that have already been found in high-entropy alloys,new properties like colossal dielectric constant,super ionic conductivity,severe anisotropic thermal expansion coefficient,strong electromagnetic wave absorption,etc.,have been discovered in HECs.As a response to the rapid development in this nascent field,this article gives a comprehensive review on the structure features,theoretical methods for stability and property prediction,processing routes,novel properties,and prospective applications of HECs.The challenges on processing,characterization,and property predictions are also emphasized.Finally,future directions for new material exploration,novel processing,fundamental understanding,in-depth characterization,and database assessments are given.展开更多
Porous ultra-high temperature ceramics(UHTCs)are promising for ultrahigh-temperature thermal insulation applications.However,the main limitations for their applications are the high thermal conductivity and densificat...Porous ultra-high temperature ceramics(UHTCs)are promising for ultrahigh-temperature thermal insulation applications.However,the main limitations for their applications are the high thermal conductivity and densification of porous structure at high temperatures.In order to overcome these obstacles,herein,porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))C was prepared by a simple method combing in-situ reaction and partial sintering.Porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))C possesses homogeneous microstructure with grain size in the range of 100–500 nm and pore size in the range of 0.2–1μm,which exhibits high porosity of 80.99%,high compressive strength of 3.45 MPa,low room temperature thermal conductivity of 0.39 W·m^-1K^-1,low thermal diffusivity of 0.74 mm^2·s^-1and good high temperature stability.The combination of these properties renders porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))Cpromising as light-weight ultrahigh temperature thermal insulation materials.展开更多
A novel high entropy(HE) rare earth monosilicate(Yb0.25Y0.25Lu0.25Er0.252 SiO5 was synthesized by solid-state reaction method.X-ray diffraction and scanning electron microscopy analysis indicate that a single solid so...A novel high entropy(HE) rare earth monosilicate(Yb0.25Y0.25Lu0.25Er0.252 SiO5 was synthesized by solid-state reaction method.X-ray diffraction and scanning electron microscopy analysis indicate that a single solid solution is formed with homogeneous distribution of rare-earth elements.HE(Yb0.25Y0.25Lu0.255 Er0.252 SiO5 exhibits excellent phase stability and anisotropy in thermal expansion.The coefficients of thermal expansion(CTEs) in three crystallographic directions are:αa=(2.57±0.07)×10^-6 K^-1,αb=(8.07±0.13)×10^-6 K^-1,αc=(9.98±0.10)×10^-6 K^-1.The strong anisotropy in thermal expansion is favorable in minimizing the coating/substrate mismatch if preferred orientation of HE(Yb0.25Y0.25Lu0.25Er0.252 SiO5 is controlled on either metal or ceramic substrate.展开更多
Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. I...Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. In this work, a novel high-entropy(HE) rare-earth phosphate monazite ceramic (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is designed and successfully synthesized. This new type of HE rare-earth phosphate monazite exhibits good chemical compatibility with Al2O3, without reaction with Al2O3 as high as 1600℃ in air. Moreover, the thermal expansion coefficient(TEC) of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4(8.9 × 10^-6/℃ at 300–1000℃) is close to that of Al2O3. The thermal conductivity of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 at room temperature is as low as 2.08 W·m^-1·K^-1, which is about 42% lower than that of La PO4. Good chemical compatibility, close TEC to that of Al2O3, and low thermal conductivity indicate that HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is suitable as a candidate EBC/TBC material and an interphase for Al2O3 f/Al2O3 composites.展开更多
Al2O3f/Al2O3 ceramic matrix composites(CMC)are promising candidate materials of blades and combustor liners of future gas turbines in light of their higher temperature capability,higher environmental stability and oxi...Al2O3f/Al2O3 ceramic matrix composites(CMC)are promising candidate materials of blades and combustor liners of future gas turbines in light of their higher temperature capability,higher environmental stability and oxidizing-free capacity[1–3].Nevertheless,grain growth,sintering and creep deformation at high operation temperatures are still serious problems for Al2O3f/Al2O3 ceramic matrix composites,which can lead to a reduction in the strength and damage tolerance[2].Moreover,Al2O3 can be corroded by the high temperature water vapor in combustion environments and yields volatile products,such as Al(OH)3[4].Consequently,environmental barrier coatings(EBCs)are necessary for Al2O3f/Al2O3 ceramic matrix composites,which can protect Al2O3f/Al2O3 CMC from high temperature and flowing combustion gas corrosion and thus increase the high temperature capability and the service life of components.展开更多
Transition metal diborides based ultrahigh temperature ceramics(UHTCs) are characterized by high melting point, high strength and hardness, and high electrical and thermal conductivity. The high thermal conductivity a...Transition metal diborides based ultrahigh temperature ceramics(UHTCs) are characterized by high melting point, high strength and hardness, and high electrical and thermal conductivity. The high thermal conductivity arises from both electronic and phonon contributions. Thus electronic and phonon contributions must be controlled simultaneously in reducing the thermal conductivity of transition metal diborides. In high entropy(HE) materials, both electrons and phonons are scattered such that the thermal conductivity can significantly be reduced, which opens a new window to design novel insulating materials. Inspired by the high entropy effect, porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is designed in this work as a new thermal insulting ultrahigh temperature material and is synthesized by an in-situ thermal borocarbon reduction/partial sintering process. The porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 possesses high porosity of 75.67%, pore size of 0.3–1.2 μm, homogeneous microstructure with small grain size of 400–800 nm, which results in low room temperature thermal diffusivity and thermal conductivity of 0.74 mm2 s^-1 and 0.51 W m^-1K^-1, respectively. In addition, it exhibits high compressive strength of3.93 MPa. The combination of these properties indicates that exploring porous high entropy ceramics such as porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is a novel strategy in making UHTCs thermal insulating.展开更多
High entropy materials(HEMs, e.g. high entropy alloys, high entropy ceramics) have gained increasing interests due to the possibility that they can provide challenge properties unattainable by traditional materials. T...High entropy materials(HEMs, e.g. high entropy alloys, high entropy ceramics) have gained increasing interests due to the possibility that they can provide challenge properties unattainable by traditional materials. Though a large number of HEMs have emerged, there is still in lack of theoretical predictions and simulations on HEMs, which is probably caused by the chemical complexity of HEMs. In this work,we demonstrate that the machine learning potentials developed in recent years can overcome the complexity of HEMs, and serve as powerful theoretical tools to simulate HEMs. A deep learning potential(DLP) for high entropy(Zr(0.2) Hf(0.2) Ti(0.2) Nb(0.2) Ta(0.2))C is fitted with the prediction error in energy and force being 9.4 me V/atom and 217 me V/?, respectively. The reliability and generality of the DLP are affirmed,since it can accurately predict lattice parameters and elastic constants of mono-phase carbides TMC(TM = Ti, Zr, Hf, Nb and Ta). Lattice constants(increase from 4.5707 ? to 4.6727 ?), thermal expansion coefficients(increase from 7.85×10-6 K^(-1) to 10.58×10-6 K^(-1)), phonon thermal conductivities(decrease from 2.02 W·m-1·K^(-1) to 0.95 W·m-1·K^(-1)), and elastic properties of high entropy(Zr(0.2) Hf(0.2) Ti(0.2) Nb(0.2) Ta(0.2))C in temperature ranging from 0°C to 2400°C are predicted by molecular dynamics simulations. The predicted room temperature properties agree well with experimental measurements, indicating the high accuracy of the DLP. With introducing of machine learning potentials, many problems that are intractable by traditional methods can be handled now. It is hopeful that deep insight into HEMs can be obtained in the future by such powerful methods.展开更多
Electromagnetic wave(EMW)absorbing materials play a vital role in modern communication and information processing technologies to inhibit information leakage and prevent possible damages to environment and human bodie...Electromagnetic wave(EMW)absorbing materials play a vital role in modern communication and information processing technologies to inhibit information leakage and prevent possible damages to environment and human bodies.Currently,most of EMW absorbing materials are either composites of two or more phases or in the form of nanosheets,nanowires or nanofibers in order to enhance the EMW absorption performance through dielectric loss,magnetic loss and dielectric/magnetic loss coupling.However,the combination of complex shapes/multi phases and nanosizes may compound the difficulties of materials processing,composition and interfaces control as well as performance maintenance during service.Thus,searching for single phase materials with good stability and superior EMW absorbing properties is appealing.To achieve this goal,the EMW absorbing properties of transition metal carbides TMCs(TM=Ti,Zr,Hf,Nb and Ta)and high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C which belong to ultrahigh temperature ceramics,were investigated in this work.Due to the good electrical conductivity and splitting of d orbitals into lower energy t2glevel and higher energy eglevel in TMC6octahedral arrangement,TMCs(TM=Ti,Zr,Hf,Nb and Ta)exhibit good EMW absorbing properties.Especially,Hf C and Ta C exhibit superior EMW absorbing properties.The minimum reflection loss(RLmin)value of Hf C is-55.8 d B at 6.0 GHz with the thickness of 3.8 mm and the effective absorption bandwidth(E_(AB))is 6.0 GHz from 12.0 to 18.0 GHz at thickness of 1.9 mm;the RL_(minvalue)of Ta C reaches-41.1 d B at 16.2 GHz with a thickness of 2.0 mm and the EABis 6.1 GHz with a thickness of 2.2 mm.Intriguingly,the electromagnetic parameters,i.e.,complex permittivity and permeability are tunable by forming single phase solid solution or high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C.The R_(Lminvalue)of high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C is-38.5 d B at 9.5 GHz with the thickness of 1.9 mm,and the EABis 2.3 GHz(from 11.3 to 13.6 GHz)at thickness of 1.5 mm.The significance of this work is that it opens a new window to design single phase high performance EMW absorbing materials by dielectric/magnetic loss coupling through tuning the conductivity and crystal field splitting energy of d orbitals of transition metals in carbides,nitrides and possibly borides.展开更多
Zr P2O7 is a promising material for high temperature insulating applications. However, decomposition above 1400℃ is the bottleneck that limiting its application at high temperatures. To improve the thermal stability,...Zr P2O7 is a promising material for high temperature insulating applications. However, decomposition above 1400℃ is the bottleneck that limiting its application at high temperatures. To improve the thermal stability, a novel multicomponent equimolar solid solution(Ti Zr Hf)P2O7 was designed and successfully synthesized in this work inspired by high-entropy ceramic(HEC) concept. The as-synthesized(Ti Zr Hf)P2O7 exhibits good thermal stability, which is not decomposed after heating at 1550℃ for 3 h. It also shows lower thermal conductivity(0.78 W m^-1 K^-1) compared to the constituting metal pyrophosphates Ti P2O7, Zr P2O7 and Hf P2O7. The combination of high thermal stability and low thermal conductivity renders(Ti Zr Hf)P2O7 promising for high temperature thermal insulating applications.展开更多
Rare-earth tantalates and niobates(REjTaO7 and REjNbO7)have been considered as promising candidate thermal barrier coating(TBC)materials in next generation gas-turbine engines due to their ultra-low thermal conductivi...Rare-earth tantalates and niobates(REjTaO7 and REjNbO7)have been considered as promising candidate thermal barrier coating(TBC)materials in next generation gas-turbine engines due to their ultra-low thermal conductivity and better thermal stability than yttria-stabilized zirconia(YSZ).However,the low Vickers hardness and toughness are the main shortcomings of RE;TaO-and REjNbOr that limit their applications as TBC materials.To increase the hardness,high entropy(Yu3Ybu3Er/3)sTaOr,(Y13YbnErns)NbO,and(Sm1/6Eu1/6Y 1/6Yb1/6Lu1/6Er1/6)3(Nb1/2Ta1/2)O7 are designed and synthesized in this study.These high entropy ceramics exhibit high Vickers hardness(10.912.0 GPa),close thermal expansion coefficients to that of single-principal-component RE3TaO,and RE;NbO,(7.9×10^-6-10.8×10-6 C-1 at room temperature),good phase stability,and good chemical compatibility with thermally grown Al2O3,which make them promising for applications as candidate TBC materials.展开更多
Fine grains and slow grain growth rate are beneficial to preventing the thermal stress-induced cracking and thermal conductivity increase of thermal barrier coatings.Inspired by the sluggish diffusion effect of high-e...Fine grains and slow grain growth rate are beneficial to preventing the thermal stress-induced cracking and thermal conductivity increase of thermal barrier coatings.Inspired by the sluggish diffusion effect of high-entropy materials,a novel high-entropy(HE)rare-earth zirconate solid solution(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2 Zr2 O7 was designed and successfully synthesized in this work.The as-synthesized(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2 Zr2 O7 is phase-pure with homogeneous rare-earth element distribution.The thermal conductivity of as-synthesized(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2 Zr2 O7 at room temperature is as low as 0.76 W m^-1 K^-1.Moreover,after being heated at 1500℃for 1-18 h,the average grain size of(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2 Zr2 O7 only increases from 1.69μm to 3.92μm,while the average grain size of La2Zr2O7 increases from 1.96μm to 8.89μm.Low thermal conductivity and sluggish grain growth rate indicate that high-entropy(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7 is suitable for application as a thermal barrier coating material and it may possess good thermal stress-induced cracking resistance.展开更多
Ytterbium aluminum garnet(Yb3Al5O12)is considered as a promising thermal barrier material.However,the main limitations of Yb3Al5O12 for thermal barrier applications are relative low thermal expansion coefficient and h...Ytterbium aluminum garnet(Yb3Al5O12)is considered as a promising thermal barrier material.However,the main limitations of Yb3Al5O12 for thermal barrier applications are relative low thermal expansion coefficient and high thermal conductivity.In order to overcome these obstacles,herein,a new high entropy(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic was designed,and then powders and bulk were prepared through solid-state reaction method and spark plasma sintering(SPS),respectively.The thermal expansion coefficient of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 is(8.54±0.29)×10^-6 K^-1 at 673 K–1273 K,which is about 9%higher than that of Yb3Al5O12.The thermal conductivity of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic is 3.81 W·m^-1 K^-1 at 300 K,which is about 18%lower than that of Yb3Al5O12.Moreover,there is no reaction between HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 and thermally grown(TG)Al2O3 even at 1600℃.After annealing at 1590℃for 18 h,the average grain size of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 increases only from 1.56μm to 2.27μm.Close thermal expansion coefficient to TG Al2O3,low thermal conductivity,good phase stability,excellent chemical compatibility with TG Al2O3 and slow grain growth rate make HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 promising for thermal barrier applications.展开更多
Y_(2)O_(3) is regarded as one of the potential environmental barrier coating(EBC)materials for Al_(2)O_(3)f/Al_(2)O_(3)ceramic matrix composites owing to its high melting point and close thermal expansion coefficient ...Y_(2)O_(3) is regarded as one of the potential environmental barrier coating(EBC)materials for Al_(2)O_(3)f/Al_(2)O_(3)ceramic matrix composites owing to its high melting point and close thermal expansion coefficient to Al_(2)O_(3).However,the relatively high thermal conductivity and unsatisfactory calcium-magnesium-aluminosilicate(CMAS)resistance are the main obstacles for the practical application of Y_(2)O_(3).In order to reduce the thermal conductivity and increase the CMAS resistance,four cubic bixbyite structured high-entropy oxides RE_(2)O_(3),including(Eu_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3),(Sm_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3),(Sm_(0.2)Eu_(0.2)Er_(0.2)Y_(0.2)Yb_(0.2))2O_(3),and(Sm_(0.2)Eu_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3)were designed and synthesized,among which(Eu_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3)and(Sm_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3)bulks were prepared by spark plasma sintering(SPS)to investigate their mechanical and thermal properties as well as CMAS resistance.The mechanical properties of(Eu_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3)and(Sm_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3) are close to those of Y_(2)O_(3) but become more brittle than Y_(2)O_(3).The thermal conductivities of(Eu_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3) and(Sm_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb02)2O_(3)(5.1 and 4.6 W·m^(-1)·K^(-1))are only 23.8%and 21.5%respectively of that of Y_(2)O_(3)(21.4 W·m^(-1)·K^(-1)),while their thermal expansion coefficients are close to those of Y_(2)O_(3) and A12O_(3).Most importantly,HE RE_(2)O_(3) ceramics exhibit good CMAS resistance.After being attacked by CMAS at 1350℃for 4 h,the HE RE_(2)O_(3) ceramics maintain their original morphologies without forming pores or cracks,making them promising as EBC materials for Al_(2)O_(3)f/Al_(2)O_(3) composites.展开更多
The critical requirements for the environmental barrier coating(EBC)materials of silicon-based ceramic matrix composites(CMCs)include good tolerance to harsh environments,thermal expansion matches with the interlayer ...The critical requirements for the environmental barrier coating(EBC)materials of silicon-based ceramic matrix composites(CMCs)include good tolerance to harsh environments,thermal expansion matches with the interlayer mullite,good high-temperature phase stability,and low thermal conductivity.Cuspidine-structured rare-earth aluminates RE_(4)Al_(2)O_(9) have been considered as candidates of EBCs for their superior mechanical and thermal properties,but the phase transition at high temperatures is a notable drawback of these materials.To suppress the phase transition and improve the phase stability,a novel cuspidine-structured rare-earth aluminate solid solution(Nd_(0.2)Sm_(0.2)Eu_(0.2)Y_(0.2)Yb_(0.2))_(4)Al_(2)O_(9) was designed and successfully synthesized inspired by entropy stabilization effect of high-entropy ceramics(HECs).The as-synthesized HE(Nd_(0.2)Sm_(0.2)Eu_(0.2)Y_(0.2)Yb_(0.2))_(4)Al_(2)O_(9) exhibits a close thermal expansion coefficient(6.96×10^(-6) K^(-1) at 300-1473 K)to that of mullite,good phase stability from 300 to 1473 K,and low thermal conductivity(1.50 W·m^(-1)·K^(-1) at room temperature).In addition,strong anisotropic thermal expansion has been observed compared to Y_(4)Al_(2)O_(9) and Yb_(4)Al_(2)O_(9).The mechanism for low thermal conductivity is attributed to the lattice distortion and mass difference of the constituent atoms,and the anisotropic thermal expansion is due to the anisotropic chemical bonding enhanced by the large size rare-earth cations.展开更多
Developing electromagnetic(EM) wave absorbing materials with low reflection coefficient and optimal operating frequency band is urgently needed on account of the increasingly serious EM pollution. However, the applica...Developing electromagnetic(EM) wave absorbing materials with low reflection coefficient and optimal operating frequency band is urgently needed on account of the increasingly serious EM pollution. However, the applications of common EM absorbing materials are encumbered by poor high-temperature stability, poor oxidation resistance, narrow absorption bandwidth or high density. Herein, the strong EM absorption capability and wide efficient absorption bandwidth of high entropy ceramics are reported for the first time, which are designed by a combination of the novel high entropy(HE) rare earth silicide carbides/rare earth oxides(RE3 Si2 C2/RE2 O3). Three HE powders, i.e., HERSC-1(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2),HERSC-2 HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3) and HERSC-3(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3), are synthesized. Although HERSC-1 exhibits a limited absorption effect(the minimum reflection loss(RLmin) is-11.6 d B at 3.4 mm) and a relatively narrow effective absorption bandwidth(EAB) of 1.7 GHz, the optimal absorption RLminvalue and EAB of HERSC-2 and HERSC-3 are-40.7 d B(at 2.9 mm), 3.4 GHz and-50.9 d B(at 2.0 mm), 4.5 GHz,respectively, demonstrating strong microwave absorption capability and wide absorption bandwidth.Considering the better stability, low density and strong EM absorption effect, HE ceramics are promising as a new type of EM absorbing materials.展开更多
基金This work was supported by the Australian Research Council Discovery Projects(DPI 50104365 and DPI 60104835)the National Natural Science Foundation of China(No.21908106 and 21878158)+2 种基金the Jiangsu Natural Science Foundation(No.BK20190682)the Program forjiangsu Specially-Appointed Professors,the Funding from State Key Laboratory of Materials-Oriented Chemical Engineering(No.ZK201808)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The existence of defects in perovskite films is a major obstacle that prevents perovskite solar cells (PSCs) from high efficiency and long-term stability. A variety of additives have been introduced into perovskite films for reducing the number of defects. Lewis base-based additive engineering has been considered as an effective way to eliminate defects, especially the defects caused by the uncoordinated Pb^(2+). In this work, for the first time, a bilateral cyano molecule (succinonitrile, SN) which is a commonly used plasticizer in solid electrolyte of solid-state lithium batteries was selected as an additive to modify organic–inorganic hybrid perovskite films in PSCs. SN is featured with two cyano groups (–C≡N) distributing at both terminals of the carbon chain, providing two cross-linking points to interact with perovskites crystals via coordinating with uncoordinated Pb2+ and forming hydrogen bonds with –NH2 groups in perovskite. It was found that the addition of SN into perovskite precursor solution could effectively reduce defects, particularly inhibit the appearance of Pb0 and thus suppress trap-assisted nonradiative charge carrier recombination. As a result, the efficiency of CH_(3)NH_(3)PbI_(3)(Cl) (MAPbI_(3)(Cl))-based PSCs was improved from 18.4% to 20._(3)% with enhanced long-term stability at N2 and humid air atmosphere. This work provides a facile and effective strategy to enhance the PCE and stability of PSCs simultaneously, facilitating the commercialization of PSCs.
基金supported by the National Natural Science Foundation of China (No. 22279057)。
文摘Perovskite solar cells(PSCs) as a rising star in the photovoltaic field have received rapidly increasing attention recently due to the boosting power conversion efficiencies(PCEs) from 3.8% to 25.7% in the last13 years. Nevertheless, the conventional PSCs with three-dimensional(3D) halide perovskites as light absorbers suffer from inferior PCEs and poor durability under sunlight, high-temperature and humid conditions due to the high defect amount and structural instability of 3D perovskites, respectively. To tackle these crucial issues, lower-dimensional halide perovskites including zero-dimensional(0D), onedimensional(1D), and two-dimensional(2D) perovskites have been employed as efficient passivators to boost the PCEs and durability of 3D-PSCs due to the high structural stability and superior resistance against moisture, heat and sunlight. Therefore, in order to achieve better understanding about the advantages and superiorities of combining low-dimensional perovskites with their 3D counterparts in improving the PCEs and durability of 3D-PSCs, the recent advances in the development and fabrication of mixeddimensional PSCs with 1D/0D perovskites as passivators are summarized and discussed in the review.The superiority of 1D/0D perovskites as passivators over 2D counterparts, the passivation mechanism and the methods of 1D/0D perovskites are also presented and discussed. Furthermore, the rules to choose1D/0D perovskites or relevant spacer cations are also emphasized. On this basis, several specific strategies to design and fabricate mixed-dimensional PSCs with 1D/0D perovskites are presented and discussed.Finally, the crucial challenges and future research directions of mixed-dimensional PSCs with 1D/0D perovskites as passivators are also proposed and discussed. This review will provide some useful insights for the future development of high-efficiency and durable mixed-dimensional PSCs.
基金This work was supported by the National Natural Science Foundation of China(Nos.U23A20562 and 52302074).The authors would like to acknowledge Bin Liu and Yiran Li at Shanghai University for helpful discussion and Guogao Tang at Kaiple Company for TEM performance。
文摘CrTaO_(4)(or Cr_(0.5)Ta_(0.5)O_(2))has been unexpectedly found to play a decisive role in improving the oxidation resistance of Cr and Ta-containing refractory high-entropy alloys(RHEAs).This rarely encountered complex oxide can effectively prevent the outward diffusion of metal cations from the RHEAs.Moreover,the oxidation kinetics of CrTaO_(4)-forming RHEAs is comparable to that of the well-known oxidation resistant Cr_(2)O_(3)-and Al_(2)O_(3)-forming Ni-based superalloys.However,CrTaO_(4)has been ignored and its mechanical and thermal properties have yet to be studied.To fill this research gap and explore the untapped potential for its applications,here we report for the first time the microstructure,mechanical and thermal properties of CrTaO_(4)prepared by hot-press sintering of solid-state reaction synthesized powders.Using the HAADF and ABF-STEM techniques,rutile crystal structure was confirmed and short range ordering was directly observed.In addition,segregation of Ta and Cr was identified.Intriguingly,CrTaO_(4)exhibits elastic/mechanical properties similar to those of yttria stabilized zirconia(YSZ)with Young’s modulus,shear modulus,and bulk modulus of 268,107,and 181 GPa,respectively,and Vickers hardness,flexural strength,and fracture toughness of 12.2±0.44 GPa,142±14 MPa,and 1.87±0.074 MPa·m^(1/2).The analogous elastic/mechanical properties of CrTaO_(4)to those of YSZ has spurred inquiries to lucrative leverage it as a new thermal barrier material.The measured melting point of CrTaO_(4)is 2103±20 K.The anisotropic thermal expansion coefficients areα_(a)=(5.68±0.10)×10^(-6)K^(-1),α_(c)=(7.81±0.11)×10^(-6)K^(-1),with an average thermal expansion coefficient of(6.39±0.11)×10^(-6)K^(-1).The room temperature thermal conductivity of CrTaO_(4)is 1.31 W·m^(-1)·K^(-1)and declines to 0.66 W·m^(-1)·K^(-1)at 1473 K,which are lower than most of the currently well-known thermal barrier materials.From the perspective of matched thermal expansion coefficient,CrTaO_(4)pertains to an eligible thermal barrier material for refractory metals such as Ta,Nb,and RHEAs,and ultrahigh temperature ceramics.As such,this work not only provides fundamental microstructure,elastic/mechanical and thermal properties that are instructive for understanding the protectiveness displayed by CrTaO_(4)on top of RHEAs but also outreaches its untapped potential as a new thermal barrier material.
基金supported by the National Key R&D Program of China(2021YFA1302500 and 2021YFA1302501)the National Natural Science Foundation of China(32293190,32293191,31970570,and 32200492).
文摘Unraveling the lineage relationships of all descendants from a zygote is fundamental to advancing our understanding of developmental and stem cell biology.However,existing cell barcoding technologies in zebrafish lack the resolution to capture the majority of cell divisions during embryogenesis.A recently developed method,a substitution mutation-aided lineage-tracing system(SMALT),successfully reconstructed high-resolution cell phylogenetic trees for Drosophila melanogaster.Here,we implement the SMALT system in zebrafish,recording a median of 14 substitution mutations on a one-kilobase-pair barcoding sequence for one-day post-fertilization embryos.Leveraging this system,we reconstruct four cell lineage trees for zebrafish fin cells,encompassing both original and regenerated fin.Each tree consists of hundreds of internal nodes with a median bootstrap support of 99%.Analysis of the obtained cell lineage trees reveals that regenerated fin cells mainly originate from cells in the same part of the fins.Through multiple times sampling germ cells from the same individual,we show the stability of the germ cell pool and the early separation of germ cell and somatic cell progenitors.Our system offers the potential for reconstructing high-quality cell phylogenies across diverse tissues,providing valuable insights into development and disease in zebrafish.
基金supported by the National Natural Science Foundation of China (No. 51602188)the Program for Professor of Special Appointment (Eastern Scholar)by Shanghai Municipal Education Commission (No. TP2015040)
文摘Thermal barrier coating(TBC) materials play important roles in gas turbine engines to protect the Nibased super-alloys from the high temperature airflow damage. High melting point, ultra-low thermal conductivity, large thermal expansion coefficient, excellent damage tolerance and moderate mechanical properties are the main requirements of promising TBC materials. In order to improve the efficiency of jet and/or gas turbine engines, which is the key of improved thrust-to-weight ratios and the energysaving, significant efforts have been made on searching for enhanced TBC materials. Theoretically, density functional theory has been successfully used in scanning the structure and properties of materials, and at the same time predicting the mechanical and thermal properties of promising TBC materials for high and ultrahigh temperature applications, which are validated by subsequent experiments. Experimentally,doping and/or alloying are also widely applied to further decrease their thermal conductivities. Now, the strategy through combining theoretical calculations and experiments on searching for next generation thermal insulator materials is widely adopted. In this review, the common used techniques and the recent advantages on searching for promising TBC materials in both theory and experiments are summarized.
基金Financial supports from the National Natural Science Foundation of China under Grant Nos.51972089,51672064,and U1435206 are also acknowledged.
文摘High-entropy ceramics (HECs) are solid solutions of inorganic compounds with one or more Wyckoff sites shared by equal or near-equal atomic ratios of multi-principal elements.Although in the infant stage,the emerging of this new family of materials has brought new opportunities for material design and property tailoring.Distinct from metals,the diversity in crystal structure and electronic structure of ceramics provides huge space for properties tuning through band structure engineering and phonon engineering.Aside from strengthening,hardening,and low thermal conductivity that have already been found in high-entropy alloys,new properties like colossal dielectric constant,super ionic conductivity,severe anisotropic thermal expansion coefficient,strong electromagnetic wave absorption,etc.,have been discovered in HECs.As a response to the rapid development in this nascent field,this article gives a comprehensive review on the structure features,theoretical methods for stability and property prediction,processing routes,novel properties,and prospective applications of HECs.The challenges on processing,characterization,and property predictions are also emphasized.Finally,future directions for new material exploration,novel processing,fundamental understanding,in-depth characterization,and database assessments are given.
基金supported by the National Natural Science Foundation of China under Grant Nos. U1435206 and 51672064Beijing Municipal Science & Technology Commission under Grant No. D161100002416001
文摘Porous ultra-high temperature ceramics(UHTCs)are promising for ultrahigh-temperature thermal insulation applications.However,the main limitations for their applications are the high thermal conductivity and densification of porous structure at high temperatures.In order to overcome these obstacles,herein,porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))C was prepared by a simple method combing in-situ reaction and partial sintering.Porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))C possesses homogeneous microstructure with grain size in the range of 100–500 nm and pore size in the range of 0.2–1μm,which exhibits high porosity of 80.99%,high compressive strength of 3.45 MPa,low room temperature thermal conductivity of 0.39 W·m^-1K^-1,low thermal diffusivity of 0.74 mm^2·s^-1and good high temperature stability.The combination of these properties renders porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))Cpromising as light-weight ultrahigh temperature thermal insulation materials.
基金financially supported by the National Natural Science Foundation of China(Nos.51672064andU1435206)。
文摘A novel high entropy(HE) rare earth monosilicate(Yb0.25Y0.25Lu0.25Er0.252 SiO5 was synthesized by solid-state reaction method.X-ray diffraction and scanning electron microscopy analysis indicate that a single solid solution is formed with homogeneous distribution of rare-earth elements.HE(Yb0.25Y0.25Lu0.255 Er0.252 SiO5 exhibits excellent phase stability and anisotropy in thermal expansion.The coefficients of thermal expansion(CTEs) in three crystallographic directions are:αa=(2.57±0.07)×10^-6 K^-1,αb=(8.07±0.13)×10^-6 K^-1,αc=(9.98±0.10)×10^-6 K^-1.The strong anisotropy in thermal expansion is favorable in minimizing the coating/substrate mismatch if preferred orientation of HE(Yb0.25Y0.25Lu0.25Er0.252 SiO5 is controlled on either metal or ceramic substrate.
基金financially supported by the National Natural Science Foundation of China (Nos. 51672064 and U1435206)
文摘Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. In this work, a novel high-entropy(HE) rare-earth phosphate monazite ceramic (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is designed and successfully synthesized. This new type of HE rare-earth phosphate monazite exhibits good chemical compatibility with Al2O3, without reaction with Al2O3 as high as 1600℃ in air. Moreover, the thermal expansion coefficient(TEC) of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4(8.9 × 10^-6/℃ at 300–1000℃) is close to that of Al2O3. The thermal conductivity of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 at room temperature is as low as 2.08 W·m^-1·K^-1, which is about 42% lower than that of La PO4. Good chemical compatibility, close TEC to that of Al2O3, and low thermal conductivity indicate that HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is suitable as a candidate EBC/TBC material and an interphase for Al2O3 f/Al2O3 composites.
基金financial supported by the National Natural Science Foundation of China(Nos.51672064 and U1435206).
文摘Al2O3f/Al2O3 ceramic matrix composites(CMC)are promising candidate materials of blades and combustor liners of future gas turbines in light of their higher temperature capability,higher environmental stability and oxidizing-free capacity[1–3].Nevertheless,grain growth,sintering and creep deformation at high operation temperatures are still serious problems for Al2O3f/Al2O3 ceramic matrix composites,which can lead to a reduction in the strength and damage tolerance[2].Moreover,Al2O3 can be corroded by the high temperature water vapor in combustion environments and yields volatile products,such as Al(OH)3[4].Consequently,environmental barrier coatings(EBCs)are necessary for Al2O3f/Al2O3 ceramic matrix composites,which can protect Al2O3f/Al2O3 CMC from high temperature and flowing combustion gas corrosion and thus increase the high temperature capability and the service life of components.
基金supported by the National Natural Science Foundation of China (Nos. 51672064 and U1435206)
文摘Transition metal diborides based ultrahigh temperature ceramics(UHTCs) are characterized by high melting point, high strength and hardness, and high electrical and thermal conductivity. The high thermal conductivity arises from both electronic and phonon contributions. Thus electronic and phonon contributions must be controlled simultaneously in reducing the thermal conductivity of transition metal diborides. In high entropy(HE) materials, both electrons and phonons are scattered such that the thermal conductivity can significantly be reduced, which opens a new window to design novel insulating materials. Inspired by the high entropy effect, porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is designed in this work as a new thermal insulting ultrahigh temperature material and is synthesized by an in-situ thermal borocarbon reduction/partial sintering process. The porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 possesses high porosity of 75.67%, pore size of 0.3–1.2 μm, homogeneous microstructure with small grain size of 400–800 nm, which results in low room temperature thermal diffusivity and thermal conductivity of 0.74 mm2 s^-1 and 0.51 W m^-1K^-1, respectively. In addition, it exhibits high compressive strength of3.93 MPa. The combination of these properties indicates that exploring porous high entropy ceramics such as porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is a novel strategy in making UHTCs thermal insulating.
基金supported financially by the National Natural Science Foundation of China(Nos.51672064 and No.U1435206)。
文摘High entropy materials(HEMs, e.g. high entropy alloys, high entropy ceramics) have gained increasing interests due to the possibility that they can provide challenge properties unattainable by traditional materials. Though a large number of HEMs have emerged, there is still in lack of theoretical predictions and simulations on HEMs, which is probably caused by the chemical complexity of HEMs. In this work,we demonstrate that the machine learning potentials developed in recent years can overcome the complexity of HEMs, and serve as powerful theoretical tools to simulate HEMs. A deep learning potential(DLP) for high entropy(Zr(0.2) Hf(0.2) Ti(0.2) Nb(0.2) Ta(0.2))C is fitted with the prediction error in energy and force being 9.4 me V/atom and 217 me V/?, respectively. The reliability and generality of the DLP are affirmed,since it can accurately predict lattice parameters and elastic constants of mono-phase carbides TMC(TM = Ti, Zr, Hf, Nb and Ta). Lattice constants(increase from 4.5707 ? to 4.6727 ?), thermal expansion coefficients(increase from 7.85×10-6 K^(-1) to 10.58×10-6 K^(-1)), phonon thermal conductivities(decrease from 2.02 W·m-1·K^(-1) to 0.95 W·m-1·K^(-1)), and elastic properties of high entropy(Zr(0.2) Hf(0.2) Ti(0.2) Nb(0.2) Ta(0.2))C in temperature ranging from 0°C to 2400°C are predicted by molecular dynamics simulations. The predicted room temperature properties agree well with experimental measurements, indicating the high accuracy of the DLP. With introducing of machine learning potentials, many problems that are intractable by traditional methods can be handled now. It is hopeful that deep insight into HEMs can be obtained in the future by such powerful methods.
基金the National Natural Science Foundation of China under grant No.51972089,No.51672064 and No.U1435206。
文摘Electromagnetic wave(EMW)absorbing materials play a vital role in modern communication and information processing technologies to inhibit information leakage and prevent possible damages to environment and human bodies.Currently,most of EMW absorbing materials are either composites of two or more phases or in the form of nanosheets,nanowires or nanofibers in order to enhance the EMW absorption performance through dielectric loss,magnetic loss and dielectric/magnetic loss coupling.However,the combination of complex shapes/multi phases and nanosizes may compound the difficulties of materials processing,composition and interfaces control as well as performance maintenance during service.Thus,searching for single phase materials with good stability and superior EMW absorbing properties is appealing.To achieve this goal,the EMW absorbing properties of transition metal carbides TMCs(TM=Ti,Zr,Hf,Nb and Ta)and high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C which belong to ultrahigh temperature ceramics,were investigated in this work.Due to the good electrical conductivity and splitting of d orbitals into lower energy t2glevel and higher energy eglevel in TMC6octahedral arrangement,TMCs(TM=Ti,Zr,Hf,Nb and Ta)exhibit good EMW absorbing properties.Especially,Hf C and Ta C exhibit superior EMW absorbing properties.The minimum reflection loss(RLmin)value of Hf C is-55.8 d B at 6.0 GHz with the thickness of 3.8 mm and the effective absorption bandwidth(E_(AB))is 6.0 GHz from 12.0 to 18.0 GHz at thickness of 1.9 mm;the RL_(minvalue)of Ta C reaches-41.1 d B at 16.2 GHz with a thickness of 2.0 mm and the EABis 6.1 GHz with a thickness of 2.2 mm.Intriguingly,the electromagnetic parameters,i.e.,complex permittivity and permeability are tunable by forming single phase solid solution or high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C.The R_(Lminvalue)of high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C is-38.5 d B at 9.5 GHz with the thickness of 1.9 mm,and the EABis 2.3 GHz(from 11.3 to 13.6 GHz)at thickness of 1.5 mm.The significance of this work is that it opens a new window to design single phase high performance EMW absorbing materials by dielectric/magnetic loss coupling through tuning the conductivity and crystal field splitting energy of d orbitals of transition metals in carbides,nitrides and possibly borides.
基金financially supported by the National Natural Science Foundation of China (Nos. 51672064 and U1435206)
文摘Zr P2O7 is a promising material for high temperature insulating applications. However, decomposition above 1400℃ is the bottleneck that limiting its application at high temperatures. To improve the thermal stability, a novel multicomponent equimolar solid solution(Ti Zr Hf)P2O7 was designed and successfully synthesized in this work inspired by high-entropy ceramic(HEC) concept. The as-synthesized(Ti Zr Hf)P2O7 exhibits good thermal stability, which is not decomposed after heating at 1550℃ for 3 h. It also shows lower thermal conductivity(0.78 W m^-1 K^-1) compared to the constituting metal pyrophosphates Ti P2O7, Zr P2O7 and Hf P2O7. The combination of high thermal stability and low thermal conductivity renders(Ti Zr Hf)P2O7 promising for high temperature thermal insulating applications.
基金This study was financially supported by the National Natural Science Foundation of China(Nos.51672064 and 51972089).
文摘Rare-earth tantalates and niobates(REjTaO7 and REjNbO7)have been considered as promising candidate thermal barrier coating(TBC)materials in next generation gas-turbine engines due to their ultra-low thermal conductivity and better thermal stability than yttria-stabilized zirconia(YSZ).However,the low Vickers hardness and toughness are the main shortcomings of RE;TaO-and REjNbOr that limit their applications as TBC materials.To increase the hardness,high entropy(Yu3Ybu3Er/3)sTaOr,(Y13YbnErns)NbO,and(Sm1/6Eu1/6Y 1/6Yb1/6Lu1/6Er1/6)3(Nb1/2Ta1/2)O7 are designed and synthesized in this study.These high entropy ceramics exhibit high Vickers hardness(10.912.0 GPa),close thermal expansion coefficients to that of single-principal-component RE3TaO,and RE;NbO,(7.9×10^-6-10.8×10-6 C-1 at room temperature),good phase stability,and good chemical compatibility with thermally grown Al2O3,which make them promising for applications as candidate TBC materials.
基金financially supported by the National Natural Science Foundation of China (Nos.51672064 and U1435206)
文摘Fine grains and slow grain growth rate are beneficial to preventing the thermal stress-induced cracking and thermal conductivity increase of thermal barrier coatings.Inspired by the sluggish diffusion effect of high-entropy materials,a novel high-entropy(HE)rare-earth zirconate solid solution(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2 Zr2 O7 was designed and successfully synthesized in this work.The as-synthesized(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2 Zr2 O7 is phase-pure with homogeneous rare-earth element distribution.The thermal conductivity of as-synthesized(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2 Zr2 O7 at room temperature is as low as 0.76 W m^-1 K^-1.Moreover,after being heated at 1500℃for 1-18 h,the average grain size of(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2 Zr2 O7 only increases from 1.69μm to 3.92μm,while the average grain size of La2Zr2O7 increases from 1.96μm to 8.89μm.Low thermal conductivity and sluggish grain growth rate indicate that high-entropy(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7 is suitable for application as a thermal barrier coating material and it may possess good thermal stress-induced cracking resistance.
基金financial supported by the National Natural Science Foundation of China(Nos.51672064 and U1435206)。
文摘Ytterbium aluminum garnet(Yb3Al5O12)is considered as a promising thermal barrier material.However,the main limitations of Yb3Al5O12 for thermal barrier applications are relative low thermal expansion coefficient and high thermal conductivity.In order to overcome these obstacles,herein,a new high entropy(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic was designed,and then powders and bulk were prepared through solid-state reaction method and spark plasma sintering(SPS),respectively.The thermal expansion coefficient of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 is(8.54±0.29)×10^-6 K^-1 at 673 K–1273 K,which is about 9%higher than that of Yb3Al5O12.The thermal conductivity of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic is 3.81 W·m^-1 K^-1 at 300 K,which is about 18%lower than that of Yb3Al5O12.Moreover,there is no reaction between HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 and thermally grown(TG)Al2O3 even at 1600℃.After annealing at 1590℃for 18 h,the average grain size of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 increases only from 1.56μm to 2.27μm.Close thermal expansion coefficient to TG Al2O3,low thermal conductivity,good phase stability,excellent chemical compatibility with TG Al2O3 and slow grain growth rate make HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 promising for thermal barrier applications.
基金This work was financially supported by the National Natural Science Foundation of China under Grant Nos.51972089,51672064,and U1637210.
文摘Y_(2)O_(3) is regarded as one of the potential environmental barrier coating(EBC)materials for Al_(2)O_(3)f/Al_(2)O_(3)ceramic matrix composites owing to its high melting point and close thermal expansion coefficient to Al_(2)O_(3).However,the relatively high thermal conductivity and unsatisfactory calcium-magnesium-aluminosilicate(CMAS)resistance are the main obstacles for the practical application of Y_(2)O_(3).In order to reduce the thermal conductivity and increase the CMAS resistance,four cubic bixbyite structured high-entropy oxides RE_(2)O_(3),including(Eu_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3),(Sm_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3),(Sm_(0.2)Eu_(0.2)Er_(0.2)Y_(0.2)Yb_(0.2))2O_(3),and(Sm_(0.2)Eu_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3)were designed and synthesized,among which(Eu_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3)and(Sm_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3)bulks were prepared by spark plasma sintering(SPS)to investigate their mechanical and thermal properties as well as CMAS resistance.The mechanical properties of(Eu_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3)and(Sm_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3) are close to those of Y_(2)O_(3) but become more brittle than Y_(2)O_(3).The thermal conductivities of(Eu_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb_(0.2))2O_(3) and(Sm_(0.2)Er_(0.2)Lu_(0.2)Y_(0.2)Yb02)2O_(3)(5.1 and 4.6 W·m^(-1)·K^(-1))are only 23.8%and 21.5%respectively of that of Y_(2)O_(3)(21.4 W·m^(-1)·K^(-1)),while their thermal expansion coefficients are close to those of Y_(2)O_(3) and A12O_(3).Most importantly,HE RE_(2)O_(3) ceramics exhibit good CMAS resistance.After being attacked by CMAS at 1350℃for 4 h,the HE RE_(2)O_(3) ceramics maintain their original morphologies without forming pores or cracks,making them promising as EBC materials for Al_(2)O_(3)f/Al_(2)O_(3) composites.
基金financial support from the National Natural Science Foundation of China(Grant Nos.51672064 and 51972089).
文摘The critical requirements for the environmental barrier coating(EBC)materials of silicon-based ceramic matrix composites(CMCs)include good tolerance to harsh environments,thermal expansion matches with the interlayer mullite,good high-temperature phase stability,and low thermal conductivity.Cuspidine-structured rare-earth aluminates RE_(4)Al_(2)O_(9) have been considered as candidates of EBCs for their superior mechanical and thermal properties,but the phase transition at high temperatures is a notable drawback of these materials.To suppress the phase transition and improve the phase stability,a novel cuspidine-structured rare-earth aluminate solid solution(Nd_(0.2)Sm_(0.2)Eu_(0.2)Y_(0.2)Yb_(0.2))_(4)Al_(2)O_(9) was designed and successfully synthesized inspired by entropy stabilization effect of high-entropy ceramics(HECs).The as-synthesized HE(Nd_(0.2)Sm_(0.2)Eu_(0.2)Y_(0.2)Yb_(0.2))_(4)Al_(2)O_(9) exhibits a close thermal expansion coefficient(6.96×10^(-6) K^(-1) at 300-1473 K)to that of mullite,good phase stability from 300 to 1473 K,and low thermal conductivity(1.50 W·m^(-1)·K^(-1) at room temperature).In addition,strong anisotropic thermal expansion has been observed compared to Y_(4)Al_(2)O_(9) and Yb_(4)Al_(2)O_(9).The mechanism for low thermal conductivity is attributed to the lattice distortion and mass difference of the constituent atoms,and the anisotropic thermal expansion is due to the anisotropic chemical bonding enhanced by the large size rare-earth cations.
基金financially supported by the National Natural Science Foundation of China(Nos.51672064 and 51972089)。
文摘Developing electromagnetic(EM) wave absorbing materials with low reflection coefficient and optimal operating frequency band is urgently needed on account of the increasingly serious EM pollution. However, the applications of common EM absorbing materials are encumbered by poor high-temperature stability, poor oxidation resistance, narrow absorption bandwidth or high density. Herein, the strong EM absorption capability and wide efficient absorption bandwidth of high entropy ceramics are reported for the first time, which are designed by a combination of the novel high entropy(HE) rare earth silicide carbides/rare earth oxides(RE3 Si2 C2/RE2 O3). Three HE powders, i.e., HERSC-1(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2),HERSC-2 HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3) and HERSC-3(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3), are synthesized. Although HERSC-1 exhibits a limited absorption effect(the minimum reflection loss(RLmin) is-11.6 d B at 3.4 mm) and a relatively narrow effective absorption bandwidth(EAB) of 1.7 GHz, the optimal absorption RLminvalue and EAB of HERSC-2 and HERSC-3 are-40.7 d B(at 2.9 mm), 3.4 GHz and-50.9 d B(at 2.0 mm), 4.5 GHz,respectively, demonstrating strong microwave absorption capability and wide absorption bandwidth.Considering the better stability, low density and strong EM absorption effect, HE ceramics are promising as a new type of EM absorbing materials.