Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spine...Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR.展开更多
The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional ...The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite.展开更多
This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data i...This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.展开更多
Microbial consortia are ubiquitous in nature,in which multiple microbial species cooperate to complete some important tasks such as lignocellulose degradation.Because of the advantages such as reduced metabolic burden...Microbial consortia are ubiquitous in nature,in which multiple microbial species cooperate to complete some important tasks such as lignocellulose degradation.Because of the advantages such as reduced metabolic burden and robustness to environment disturbances,developing a microbial consortium is a promising approach for valuable product synthesis,lignocellulose utilization,human health care,bioremediation and sustainable energy,etc.Despite the benefits,however,most artificial microbial consortia confront the problems of instability and low efficiency due to growth competition and metabolite incompatibility.To overcome these challenges,multiple strategies to design efficient synthetic microbial consortia have been reported.In this review,the interactions that determine the stability and performance of microbial consortia were described.Progress of artificial microbial consortia research was summarized,and the key strategies i.e.,spatial or temporal segregation,separated utilization of nutrients,nutrient cross-feeding and division of labor,that will be of great importance for achieving a stable and efficient microbial consortium were highlighted.Two novel advanced tools,signaling molecule systems and computational models,were also introduced and discussed.We believed that combining the universal cell–cell signaling molecule systems with computational models will be promising for synthetic microbial consortia construction in the future.展开更多
Iron isotopic composition of the upper continental crust(UCC) is critical for understanding Fe mobilization and migration through the Earth. Because rocks exposed at Earth's surface have heterogeneous δ^(56)Fe, f...Iron isotopic composition of the upper continental crust(UCC) is critical for understanding Fe mobilization and migration through the Earth. Because rocks exposed at Earth's surface have heterogeneous δ^(56)Fe, finegrained clastic sediments can be used to estimate the average composition of UCC. In this study, we report δ^(56)Fe of loess-paleosol sequences from Yimaguan, Chinese Loess Plateau(CLP), to constrain the average Fe isotopic composition of UCC. The loess-paleosol sequences in this area formed in glacial-interglacial cycles and are characterized by varying degrees of weathering. Our data show that the loess-paleosol layers have extremely homogeneous Fe isotopic compositions with δ^(56)Fe ranging from 0.06‰ to 0.12‰, regardless of variations in the major element composition and weathering intensity. Our study indicates that since Fe isotopes are not significantly fractionated during loess deposition, the loess can be regarded as representative of UCC. It follows that the average δ^(56)Fe of UCC is 0.09‰± 0.03‰(2SD), consistent with previous estimates based on igneous rock data.展开更多
The specificities of tissue culture of wheat greatly limit the use of chloroplast transformation technologies in this crop. One limitation in wheat tissue culture is that it is difficult to regenerate plantlets from l...The specificities of tissue culture of wheat greatly limit the use of chloroplast transformation technologies in this crop. One limitation in wheat tissue culture is that it is difficult to regenerate plantlets from leaf tissue explants of regenerated plantlets, resulting in difficulty in obtaining homoplastic plants via multiple rounds of antibiotic selection of chloroplast transformants. Thus, a repeated in vitro regeneration system from leaf tissues was studied in this research. Our results showed that 2 mm leaf basal segments of the 4 cm high leaves from regenerated plantlets can give the best callus induction at present study. The best callus induction medium was Murashige and Skoog (MS) basal medium supplemented with 2 mg/L 2,4-dichlorophenoxyacetic acid and 1 mg/L naphthalenacetic acid, which gave a callus induction rate of up to 87.2%. The optimal differentiation medium was MS basal medium supplemented with 10 mg/L silver nitrate and 1 mg/L 2,3,5-triiodobenzoic acid, which gave a regeneration rate up to 33.7% for the wheat lines tested. This is the first report showing that leaf basal segments of in vitro regenerated plantlets can be used for regeneration of wheat. The establishment of a repetitive regeneration system should pave the way for the development of chloroplast transformation and the plant regeneration systems starting from leaf material of in vitro regenerated wheat and other cereal crops.展开更多
Interfacial solar evaporation(ISE)has emerged as a promising technology to alleviate global water scarcity via energy-efficient purification of both wastewater and seawater.While ISE was originally identified and deve...Interfacial solar evaporation(ISE)has emerged as a promising technology to alleviate global water scarcity via energy-efficient purification of both wastewater and seawater.While ISE was originally identified and developed during studies of simple double-layered two-dimensional(2D)evaporators,observed limitations in evaporation rate and functionality soon led to the development of three-dimensional(3D)evaporators,which is now recognized as one of the most pivotal milestones in the research field.3D evaporators significantly enhance the evaporation rates beyond the theoretical limits of 2D evaporators.Furthermore,3D evaporators could have multifaceted functionalities originating from various functional evaporation surfaces and 3D structures.This review summarizes recent advances in 3D evaporators,focusing on rational design,fabrication and energy nexus of 3D evaporators,and the derivative functions for improving solar evaporation performance and exploring novel applications.Future research prospects are also proposed based on the in-depth understanding of the fundamental aspects of 3D evaporators and the requirements for practical applications.展开更多
Granite is the dominant rock type in Earth’s continental crust.The origin of granite can be directly or indirectly related to the fractional crystallization of mantle-derived basaltic melt or the reworking of pre-exi...Granite is the dominant rock type in Earth’s continental crust.The origin of granite can be directly or indirectly related to the fractional crystallization of mantle-derived basaltic melt or the reworking of pre-existing continental or oceanic crust, which contribute to the growth of continental crust. Among the various types of granites, the peraluminous leucogranites in the Himalayan orogen, which are high in SiO_2(>73%) and low in mafic minerals (<5%),展开更多
Accurately representing the quantity and characteristics of users' interest in certain topics is an important problem facing topic evolution researchers, particularly as it applies to modem online environments. Searc...Accurately representing the quantity and characteristics of users' interest in certain topics is an important problem facing topic evolution researchers, particularly as it applies to modem online environments. Search engines can provide information retrieval for a specified topic from archived data, but fail to reflect changes in interest toward the topic over time in a structured way. This paper reviews notable research on topic evolution based on the probabilistic topic model from multiple aspects over the past decade. First, we introduce notations, terminology, and the basic topic model explored in the survey, then we summarize three categories of topic evolution based on the probabilistic topic model: the discrete time topic evolution model, the continuous time topic evolution model, and the online topic evolution model. Next, we describe applications of the topic evolution model and attempt to summarize model generalization performance evaluation and topic evolution evaluation methods, as well as providing comparative experimental results for different models. To conclude the review, we pose some open questions and discuss possible future research directions.展开更多
Microbial morphology engineering is a novel approach for cell factory to improve the titer of target product in bio-manufacture.Hyaluronic acid(HA),a valuable glycosaminoglycan polymerized by HA synthase(HAS),a membra...Microbial morphology engineering is a novel approach for cell factory to improve the titer of target product in bio-manufacture.Hyaluronic acid(HA),a valuable glycosaminoglycan polymerized by HA synthase(HAS),a membrane protein,is particularly selected as the model product to improve its single-cell HA-producing capacity via morphology engineering.DivIVA and FtsZ,the cell-elongation and cell division related protein,respectively,were both down/up dual regulated in C.glutamicum via weak promoter substitution or plasmid overexpression.Different from the natural short-rod shape,varied morphologies of engineered cells,i.e.small-ellipsoid-like(DivIVA-reduced),bulb-like(DivIVA-enhanced),long-rod(FtsZ-reduced)and dumbbell-like(FtsZ-enhanced),were observed.Applying these morphology-changed cells as hosts for HA production,the reduced expression of both DivIVA and FtsZ seriously inhibited normal cell growth;meanwhile,overexpression of DivIVA didn't show morphology changes,but overexpression of FtsZ surprisingly change the cell-shape into long and thick rod with remarkably enlarged single-cell surface area(more than 5.2-fold-increase).And finally,the single-cell HA-producing capacity of the FtsZ-overexpressed C.glutamicum was immensely improved by 13.5-folds.Flow cytometry analyses verified that the single-cell HAS amount on membrane was enhanced by 2.1 folds.This work is pretty valuable for high titer synthesis of diverse metabolic products with microbial cell factory.展开更多
Genome engineering of Rhodococcus opacus PD630,an important microorganism used for the bioconversion of lignin,is currently dependent on inefficient homologous recombination.Although a CRISPR interference procedure fo...Genome engineering of Rhodococcus opacus PD630,an important microorganism used for the bioconversion of lignin,is currently dependent on inefficient homologous recombination.Although a CRISPR interference procedure for gene repression has previously been developed for R.opacus PD630,a CRISPR/Cas9 system for gene knockout has yet to be reported for the strain.In this study,we found that the cytotoxicity of Cas9 and the deficiency in pathways for repairing DNA double-strand breaks(DSBs)were the major causes of the failure of conventional CRISPR/Cas9 technologies in R.opacus,even when augmented with the recombinases Che9c60 and Che9c61.We successfully developed an efficient single-stranded DNA(ssDNA)recombineering system coupled with CRISPR/Cas9 counter-selection,which facilitated rapid and scarless editing of the R.opacus genome.A two-plasmid system,comprising Cas9 driven by a weak Rhodococcus promoter Pniami,designed to prevent cytotoxicity,and a single-guide RNA(sgRNA)under the control of a strong constitutive promoter,was proven to be appropriate with respect to cleavage function.A novel recombinase,RrRecT derived from a Rhodococcus ruber prophage,was identified for the first time,which facilitated recombination of short ssDNA donors(40-80 nt)targeted to the lagging strand and enabled us to obtain a recombination efficiency up to 103-fold higher than that of endogenous pathways.Finally,by incorporating RrRecT and Cas9 into a single plasmid and then co-transforming cells with sgRNA plasmids and short ssDNA donors,we efficiently achieved gene disruption and base mutation in R.opacus,with editing efficiencies ranging from 22%to 100%.Simultaneous disruption of double genes was also confirmed,although at a lower efficiency.This effective genome editing tool will accelerate the engineering of R.opacus metabolism.展开更多
In this paper,Ni_(3)S_(2)nanosheet(NS)was generated by chemical etching with sodium sulfide directly on the nickel foam(NF),which was induced by dielectric barrier discharge plasma in liquid.Compared with other chemic...In this paper,Ni_(3)S_(2)nanosheet(NS)was generated by chemical etching with sodium sulfide directly on the nickel foam(NF),which was induced by dielectric barrier discharge plasma in liquid.Compared with other chemical etching methods of nickel-based nanomaterials,this method was not only rapid(40 min)and mild(at room temperature and atmospheric pressure),but also showed consistent stability and good reproducibility.The Ni_(3)S_(2)NS/NF electrode showed excellent performance in the electrochemical detection of formaldehyde under alkaline conditions.It had a good linear relationship with the concentration of formaldehyde in the range of 0.002-5.45 mmol/L(R^(2)=0.9957)and the limit of detection(LOD)was 1.23μmol/L(S/N=3).The sensitivity was 1286.9μA L mmol^(–1)cm^(–2),and the response time was about 5 s.The plasma-induced chemical etching strategy provides a simple and stable electrode preparation method,which has great application prospects in nonenzymatic electrochemical sensors.展开更多
Binary neural networks(BNNs)show promising utilization in cost and power-restricted domains such as edge devices and mobile systems.This is due to its significantly less computation and storage demand,but at the cost ...Binary neural networks(BNNs)show promising utilization in cost and power-restricted domains such as edge devices and mobile systems.This is due to its significantly less computation and storage demand,but at the cost of degraded performance.To close the accuracy gap,in this paper we propose to add a complementary activation function(AF)ahead of the sign based binarization,and rely on the genetic algorithm(GA)to automatically search for the ideal AFs.These AFs can help extract extra information from the input data in the forward pass,while allowing improved gradient approximation in the backward pass.Fifteen novel AFs are identified through our GA-based search,while most of them show improved performance(up to 2.54%on ImageNet)when testing on different datasets and network models.Interestingly,periodic functions are identified as a key component for most of the discovered AFs,which rarely exist in human designed AFs.Our method offers a novel approach for designing general and application-specific BNN architecture.GAAF will be released on GitHub.展开更多
The advance of the Internet in the past decade has radically changed the way people communicate and col- laborate with each other. Physical distance is no more a barrier in online social networks, but cultural differe...The advance of the Internet in the past decade has radically changed the way people communicate and col- laborate with each other. Physical distance is no more a barrier in online social networks, but cultural differences (at the individual, community, as well as societal levels) still govern human-human interactions and must be con- sidered and leveraged in the online world. The rapid deployment of high-speed lnternet allows humans to interact using a rich set of multimedia data such as texts, pictures, and videos. This position paper proposes to define a new research area called 'connected multimedia', which is the study of a collection of research issues of the super-area social media that receive little attention in the literature. By connected multimedia, we mean the study of the social and technical interactions among users, multimedia data, and devices across cultures and explicitly exploiting the cultural differences. We justify why it is necessary to bring attention to this new research area and what benefits of this new research area may bring to the broader scientific research community and the humanity.展开更多
Alternative splicing is a major contributor to transcriptome and proteome diversity in eukaryotes. Comparing to normal samples, about 30% more alternative splicing events were recently identified in 32 cancer types in...Alternative splicing is a major contributor to transcriptome and proteome diversity in eukaryotes. Comparing to normal samples, about 30% more alternative splicing events were recently identified in 32 cancer types included in The Cancer Genome Atlas database. Some alternative splicing isoforms and their encoded proteins contribute to specific cancer hallmarks. In this review, we will discuss recent progress regarding the contributions of alternative splicing to breast cancer metastasis. We plan to dissect the role of MTDH, CD44 and their interaction with other mRNA splicing factors. We believe an in-depth understanding of the mechanism underlying the contribution of splicing to breast cancer metastasis will provide novel strategies to the management of breast cancer.展开更多
基金financial support from the National Natural Science Foundation of China(52203070)the Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2022005)+2 种基金the Open Fund of Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing(STRZ202203)the financial support provided by the China Scholarship Council(CSC)Visiting Scholar Programfinancial support from Institute for Sustainability,Energy and Resources,The University of Adelaide,Future Making Fellowship。
文摘Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR.
基金financial support from the National Natural Science Foundation of China (52203070)the Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies (FZ2022005)+2 种基金the Open Fund of Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing (STRZ202203)the financial support provided by the China Scholarship Council (CSC)Visiting Scholar Programfinancial support from Institute for Sustainability,Energy and Resources,The University of Adelaide,Future Making Fellowship,Australia。
文摘The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite.
文摘This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.
基金supported by the National Natural Science Foundation of China(42073007,41803003)the Fundamental Research Funds for the Central Universities(WK2080000149).
基金This work was supported by the National Key R&D Program of China(2018YFA0902200)National Natural Science Foundation of China(No.21776157No.22078173).
文摘Microbial consortia are ubiquitous in nature,in which multiple microbial species cooperate to complete some important tasks such as lignocellulose degradation.Because of the advantages such as reduced metabolic burden and robustness to environment disturbances,developing a microbial consortium is a promising approach for valuable product synthesis,lignocellulose utilization,human health care,bioremediation and sustainable energy,etc.Despite the benefits,however,most artificial microbial consortia confront the problems of instability and low efficiency due to growth competition and metabolite incompatibility.To overcome these challenges,multiple strategies to design efficient synthetic microbial consortia have been reported.In this review,the interactions that determine the stability and performance of microbial consortia were described.Progress of artificial microbial consortia research was summarized,and the key strategies i.e.,spatial or temporal segregation,separated utilization of nutrients,nutrient cross-feeding and division of labor,that will be of great importance for achieving a stable and efficient microbial consortium were highlighted.Two novel advanced tools,signaling molecule systems and computational models,were also introduced and discussed.We believed that combining the universal cell–cell signaling molecule systems with computational models will be promising for synthetic microbial consortia construction in the future.
基金financially supported by the National Science Foundation of China(41173031,41325011 and 41503001)the Fundamental Research Funds for the Central Universities(WK3410000004)
文摘Iron isotopic composition of the upper continental crust(UCC) is critical for understanding Fe mobilization and migration through the Earth. Because rocks exposed at Earth's surface have heterogeneous δ^(56)Fe, finegrained clastic sediments can be used to estimate the average composition of UCC. In this study, we report δ^(56)Fe of loess-paleosol sequences from Yimaguan, Chinese Loess Plateau(CLP), to constrain the average Fe isotopic composition of UCC. The loess-paleosol sequences in this area formed in glacial-interglacial cycles and are characterized by varying degrees of weathering. Our data show that the loess-paleosol layers have extremely homogeneous Fe isotopic compositions with δ^(56)Fe ranging from 0.06‰ to 0.12‰, regardless of variations in the major element composition and weathering intensity. Our study indicates that since Fe isotopes are not significantly fractionated during loess deposition, the loess can be regarded as representative of UCC. It follows that the average δ^(56)Fe of UCC is 0.09‰± 0.03‰(2SD), consistent with previous estimates based on igneous rock data.
文摘The specificities of tissue culture of wheat greatly limit the use of chloroplast transformation technologies in this crop. One limitation in wheat tissue culture is that it is difficult to regenerate plantlets from leaf tissue explants of regenerated plantlets, resulting in difficulty in obtaining homoplastic plants via multiple rounds of antibiotic selection of chloroplast transformants. Thus, a repeated in vitro regeneration system from leaf tissues was studied in this research. Our results showed that 2 mm leaf basal segments of the 4 cm high leaves from regenerated plantlets can give the best callus induction at present study. The best callus induction medium was Murashige and Skoog (MS) basal medium supplemented with 2 mg/L 2,4-dichlorophenoxyacetic acid and 1 mg/L naphthalenacetic acid, which gave a callus induction rate of up to 87.2%. The optimal differentiation medium was MS basal medium supplemented with 10 mg/L silver nitrate and 1 mg/L 2,3,5-triiodobenzoic acid, which gave a regeneration rate up to 33.7% for the wheat lines tested. This is the first report showing that leaf basal segments of in vitro regenerated plantlets can be used for regeneration of wheat. The establishment of a repetitive regeneration system should pave the way for the development of chloroplast transformation and the plant regeneration systems starting from leaf material of in vitro regenerated wheat and other cereal crops.
基金financial support from Australian Research Council(FT 190100485,DP 220100583,DP 230102740,and DP 240101581)。
文摘Interfacial solar evaporation(ISE)has emerged as a promising technology to alleviate global water scarcity via energy-efficient purification of both wastewater and seawater.While ISE was originally identified and developed during studies of simple double-layered two-dimensional(2D)evaporators,observed limitations in evaporation rate and functionality soon led to the development of three-dimensional(3D)evaporators,which is now recognized as one of the most pivotal milestones in the research field.3D evaporators significantly enhance the evaporation rates beyond the theoretical limits of 2D evaporators.Furthermore,3D evaporators could have multifaceted functionalities originating from various functional evaporation surfaces and 3D structures.This review summarizes recent advances in 3D evaporators,focusing on rational design,fabrication and energy nexus of 3D evaporators,and the derivative functions for improving solar evaporation performance and exploring novel applications.Future research prospects are also proposed based on the in-depth understanding of the fundamental aspects of 3D evaporators and the requirements for practical applications.
基金supported by the National Natural Science Foundation of China(41772058 and 41402055)
文摘Granite is the dominant rock type in Earth’s continental crust.The origin of granite can be directly or indirectly related to the fractional crystallization of mantle-derived basaltic melt or the reworking of pre-existing continental or oceanic crust, which contribute to the growth of continental crust. Among the various types of granites, the peraluminous leucogranites in the Himalayan orogen, which are high in SiO_2(>73%) and low in mafic minerals (<5%),
基金Acknowledgements The authors would like to thank the anonymous reviewers for their constructive comments and suggestions, which significantly contributed to improving the manuscript. This work was supported by the National Key Basic Research Project of China (973 Program) (2012CB316400), the National Natural Science Foundation of China (Grant Nos. 61471321, 61202400, 31300539, and 31570629), the Zhejiang Provincial Natural Science Foundation of China (LY15C140005, LY16F010004), Science and Technology Department of Zhejiang Province Public Welfare Project (2016C31G2010057, 2015C31004), Fundamental Research Funds for the Central Universities (172210261) and the Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research.
文摘Accurately representing the quantity and characteristics of users' interest in certain topics is an important problem facing topic evolution researchers, particularly as it applies to modem online environments. Search engines can provide information retrieval for a specified topic from archived data, but fail to reflect changes in interest toward the topic over time in a structured way. This paper reviews notable research on topic evolution based on the probabilistic topic model from multiple aspects over the past decade. First, we introduce notations, terminology, and the basic topic model explored in the survey, then we summarize three categories of topic evolution based on the probabilistic topic model: the discrete time topic evolution model, the continuous time topic evolution model, and the online topic evolution model. Next, we describe applications of the topic evolution model and attempt to summarize model generalization performance evaluation and topic evolution evaluation methods, as well as providing comparative experimental results for different models. To conclude the review, we pose some open questions and discuss possible future research directions.
基金This work was supported by National Key R&D Program of China[2018YFA0902200]the National Natural Science Foundation of China[No.21776157].
文摘Microbial morphology engineering is a novel approach for cell factory to improve the titer of target product in bio-manufacture.Hyaluronic acid(HA),a valuable glycosaminoglycan polymerized by HA synthase(HAS),a membrane protein,is particularly selected as the model product to improve its single-cell HA-producing capacity via morphology engineering.DivIVA and FtsZ,the cell-elongation and cell division related protein,respectively,were both down/up dual regulated in C.glutamicum via weak promoter substitution or plasmid overexpression.Different from the natural short-rod shape,varied morphologies of engineered cells,i.e.small-ellipsoid-like(DivIVA-reduced),bulb-like(DivIVA-enhanced),long-rod(FtsZ-reduced)and dumbbell-like(FtsZ-enhanced),were observed.Applying these morphology-changed cells as hosts for HA production,the reduced expression of both DivIVA and FtsZ seriously inhibited normal cell growth;meanwhile,overexpression of DivIVA didn't show morphology changes,but overexpression of FtsZ surprisingly change the cell-shape into long and thick rod with remarkably enlarged single-cell surface area(more than 5.2-fold-increase).And finally,the single-cell HA-producing capacity of the FtsZ-overexpressed C.glutamicum was immensely improved by 13.5-folds.Flow cytometry analyses verified that the single-cell HAS amount on membrane was enhanced by 2.1 folds.This work is pretty valuable for high titer synthesis of diverse metabolic products with microbial cell factory.
基金supported by the National Key R&D Program of China(2018YFA0902200)Natural Science Foundation of China(No.21776157,No.22078173)。
文摘Genome engineering of Rhodococcus opacus PD630,an important microorganism used for the bioconversion of lignin,is currently dependent on inefficient homologous recombination.Although a CRISPR interference procedure for gene repression has previously been developed for R.opacus PD630,a CRISPR/Cas9 system for gene knockout has yet to be reported for the strain.In this study,we found that the cytotoxicity of Cas9 and the deficiency in pathways for repairing DNA double-strand breaks(DSBs)were the major causes of the failure of conventional CRISPR/Cas9 technologies in R.opacus,even when augmented with the recombinases Che9c60 and Che9c61.We successfully developed an efficient single-stranded DNA(ssDNA)recombineering system coupled with CRISPR/Cas9 counter-selection,which facilitated rapid and scarless editing of the R.opacus genome.A two-plasmid system,comprising Cas9 driven by a weak Rhodococcus promoter Pniami,designed to prevent cytotoxicity,and a single-guide RNA(sgRNA)under the control of a strong constitutive promoter,was proven to be appropriate with respect to cleavage function.A novel recombinase,RrRecT derived from a Rhodococcus ruber prophage,was identified for the first time,which facilitated recombination of short ssDNA donors(40-80 nt)targeted to the lagging strand and enabled us to obtain a recombination efficiency up to 103-fold higher than that of endogenous pathways.Finally,by incorporating RrRecT and Cas9 into a single plasmid and then co-transforming cells with sgRNA plasmids and short ssDNA donors,we efficiently achieved gene disruption and base mutation in R.opacus,with editing efficiencies ranging from 22%to 100%.Simultaneous disruption of double genes was also confirmed,although at a lower efficiency.This effective genome editing tool will accelerate the engineering of R.opacus metabolism.
基金the Foundation of Sichuan Normal University(No.XJ20210047)Foundation of Sichuan Department of Science and Technology(No.2017FZ0079)for financial support。
文摘In this paper,Ni_(3)S_(2)nanosheet(NS)was generated by chemical etching with sodium sulfide directly on the nickel foam(NF),which was induced by dielectric barrier discharge plasma in liquid.Compared with other chemical etching methods of nickel-based nanomaterials,this method was not only rapid(40 min)and mild(at room temperature and atmospheric pressure),but also showed consistent stability and good reproducibility.The Ni_(3)S_(2)NS/NF electrode showed excellent performance in the electrochemical detection of formaldehyde under alkaline conditions.It had a good linear relationship with the concentration of formaldehyde in the range of 0.002-5.45 mmol/L(R^(2)=0.9957)and the limit of detection(LOD)was 1.23μmol/L(S/N=3).The sensitivity was 1286.9μA L mmol^(–1)cm^(–2),and the response time was about 5 s.The plasma-induced chemical etching strategy provides a simple and stable electrode preparation method,which has great application prospects in nonenzymatic electrochemical sensors.
文摘Binary neural networks(BNNs)show promising utilization in cost and power-restricted domains such as edge devices and mobile systems.This is due to its significantly less computation and storage demand,but at the cost of degraded performance.To close the accuracy gap,in this paper we propose to add a complementary activation function(AF)ahead of the sign based binarization,and rely on the genetic algorithm(GA)to automatically search for the ideal AFs.These AFs can help extract extra information from the input data in the forward pass,while allowing improved gradient approximation in the backward pass.Fifteen novel AFs are identified through our GA-based search,while most of them show improved performance(up to 2.54%on ImageNet)when testing on different datasets and network models.Interestingly,periodic functions are identified as a key component for most of the discovered AFs,which rarely exist in human designed AFs.Our method offers a novel approach for designing general and application-specific BNN architecture.GAAF will be released on GitHub.
基金supported in part by US National Science Foundation through grant IIS-0956924College of Computer Science and Technology of Zhejiang University, China+2 种基金The follow-up workshop in 2010 held in Florence was supported in part by ACM and Microsoft ResearchZhongfei ZHANG is also supported in part by the National Basic ResearchProgram of China (No. 2012CB316400)ZJU-Alibaba Financial Joint Lab, Zhejiang Provincial Engineering Center on Media Data Cloud Processing and Analysis, and US NSF (Nos. IIS-0812114 and CCF-1017828)
文摘The advance of the Internet in the past decade has radically changed the way people communicate and col- laborate with each other. Physical distance is no more a barrier in online social networks, but cultural differences (at the individual, community, as well as societal levels) still govern human-human interactions and must be con- sidered and leveraged in the online world. The rapid deployment of high-speed lnternet allows humans to interact using a rich set of multimedia data such as texts, pictures, and videos. This position paper proposes to define a new research area called 'connected multimedia', which is the study of a collection of research issues of the super-area social media that receive little attention in the literature. By connected multimedia, we mean the study of the social and technical interactions among users, multimedia data, and devices across cultures and explicitly exploiting the cultural differences. We justify why it is necessary to bring attention to this new research area and what benefits of this new research area may bring to the broader scientific research community and the humanity.
基金The studies were supported from NIH(RO1CA184101)to Meng X
文摘Alternative splicing is a major contributor to transcriptome and proteome diversity in eukaryotes. Comparing to normal samples, about 30% more alternative splicing events were recently identified in 32 cancer types included in The Cancer Genome Atlas database. Some alternative splicing isoforms and their encoded proteins contribute to specific cancer hallmarks. In this review, we will discuss recent progress regarding the contributions of alternative splicing to breast cancer metastasis. We plan to dissect the role of MTDH, CD44 and their interaction with other mRNA splicing factors. We believe an in-depth understanding of the mechanism underlying the contribution of splicing to breast cancer metastasis will provide novel strategies to the management of breast cancer.