Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work comb...Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work combines the simulation calculations with the electrical measurements of SWCNT field-effect transistors(FETs),which limits further understanding on the mechanisms of radiation effects.Here,SWCNT film-based FETs were fabricated to explore the total ionizing dose(TID)and displacement damage effect on the electrical performance under low-energy proton irradiation with different fluences up to 1×1015 p/cm2.Large negative shift of the threshold voltage and obvious decrease of the on-state current verified the TID effect caused in the oxide layer.The stability of the subthreshold swing and the off-state current reveals that the displacement damage caused in the CNT layer is not serious,which proves that the CNT film is radiation-hardened.Specially,according to the simulation,we found the displacement damage caused by protons is different in the source/drain contact area and channel area,leading to varying degrees of change for the contact resistance and sheet resistance.Having analyzed the simulation results and electrical measurements,we explained the low-energy proton irradiation mechanism of the CNT FETs,which is essential for the construction of radiation-hardened CNT film-based ICs for aircrafts.展开更多
The effects of ionizing and displacement irradiation of high-energy x-ray and 2-MeV proton on GaN thin films were investigated and compared in this study.The electrical properties of both P-GaN and N-GaN,separated fro...The effects of ionizing and displacement irradiation of high-energy x-ray and 2-MeV proton on GaN thin films were investigated and compared in this study.The electrical properties of both P-GaN and N-GaN,separated from power devices,were gauged for fundamental analysis.It was found that the electrical properties of P-GaN were improved as a consequence of the disruption of the Mg-H bond induced by high-dose x-ray irradiation,as indicated by the Hall and circular transmission line model.Specifically,under a 100-Mrad(Si)x-ray dose,the specific contact resistance pc of P-GaN decreased by 30%,and the hole carrier concentration increased significantly.Additionally,the atom displacement damage effect of a 2-MeV proton of 1×10^(13)p/cm^(2)led to a significant degradation of the electrical properties of P-GaN,while those of N-GaN remained unchanged.P-GaN was found to be more sensitive to irradiation than N-GaN thin film.The effectiveness of x-ray irradiation in enhancing the electrical properties of P-GaN thin films was demonstrated in this study.展开更多
This paper describes a method to decompose multi-scale information from different source medical image using wavelet transformation. The data fusion between CT image and MRI image is implemented based on the coefficie...This paper describes a method to decompose multi-scale information from different source medical image using wavelet transformation. The data fusion between CT image and MRI image is implemented based on the coefficients fusion rule which included choice of regional variance and weighted average wavelet information. The result indicates that this method is better than WMF, LEF and RVF on fusion results, details and target distortion.展开更多
Economic development and social progress, China’s openness to the outside world is getting higher and higher, and the development of comprehensive Russian curriculum is particularly important. Among them, for the sit...Economic development and social progress, China’s openness to the outside world is getting higher and higher, and the development of comprehensive Russian curriculum is particularly important. Among them, for the situational teaching method, it is one of the most important teaching methods. Through the application of the situational teaching method, a vivid and vivid learning atmosphere can be created, and the intuitiveness and image of the language scene can be fully reflected, which provides a strong guarantee for the development of Russian curriculum teaching. This paper mainly uses the application of situational teaching method in the comprehensive Russian curriculum, aiming to provide feasible guidance for relevant researchers.展开更多
Owing to the unique characteristics of ultra-thin body and nanoscale sensitivity volume,MoS_(2)-based field-effect tran-sistors(FETs)are regarded as optimal components for radiation-hardened integrated circuits(ICs),w...Owing to the unique characteristics of ultra-thin body and nanoscale sensitivity volume,MoS_(2)-based field-effect tran-sistors(FETs)are regarded as optimal components for radiation-hardened integrated circuits(ICs),which is exponentially grow-ing demanded especially in the fields of space exploration and the nuclear industry.Many researches on MoS_(2)-based radiation tolerance electronics focused on the total ionizing dose(TID)effect,while few works concerned the displacement damage(DD)effects,which is more challenging to measure and more crucial for practical applications.We first conducted measurements to assess the DD effects of MoS_(2) FETs,and then presented the stopping and ranges of ions in matter(SRIM)simulation to analysis the DD degradation mechanism in MoS_(2) electronics.The monolayer MoS_(2)-based FETs exhibit DD radiation tolerance up to 1.56×1013 MeV/g,which is at least two order of magnitude than that in conventional radiation hardened ICs.The exceptional DD radiation tolerance will significantly enhance the deployment of MoS_(2) integrated circuits in environments characterized by high-energy solar and cosmic radiation exposure.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(No.61704189)the Common Information System Equipment Pre-Research Special Technology Project(31513020404-2)Youth Innovation Promotion Association of Chinese Academy of Sciences and the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,and the Key Research Program of Frontier Sciences,CAS(Grant ZDBS-LY-JSC015)。
文摘Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work combines the simulation calculations with the electrical measurements of SWCNT field-effect transistors(FETs),which limits further understanding on the mechanisms of radiation effects.Here,SWCNT film-based FETs were fabricated to explore the total ionizing dose(TID)and displacement damage effect on the electrical performance under low-energy proton irradiation with different fluences up to 1×1015 p/cm2.Large negative shift of the threshold voltage and obvious decrease of the on-state current verified the TID effect caused in the oxide layer.The stability of the subthreshold swing and the off-state current reveals that the displacement damage caused in the CNT layer is not serious,which proves that the CNT film is radiation-hardened.Specially,according to the simulation,we found the displacement damage caused by protons is different in the source/drain contact area and channel area,leading to varying degrees of change for the contact resistance and sheet resistance.Having analyzed the simulation results and electrical measurements,we explained the low-energy proton irradiation mechanism of the CNT FETs,which is essential for the construction of radiation-hardened CNT film-based ICs for aircrafts.
文摘The effects of ionizing and displacement irradiation of high-energy x-ray and 2-MeV proton on GaN thin films were investigated and compared in this study.The electrical properties of both P-GaN and N-GaN,separated from power devices,were gauged for fundamental analysis.It was found that the electrical properties of P-GaN were improved as a consequence of the disruption of the Mg-H bond induced by high-dose x-ray irradiation,as indicated by the Hall and circular transmission line model.Specifically,under a 100-Mrad(Si)x-ray dose,the specific contact resistance pc of P-GaN decreased by 30%,and the hole carrier concentration increased significantly.Additionally,the atom displacement damage effect of a 2-MeV proton of 1×10^(13)p/cm^(2)led to a significant degradation of the electrical properties of P-GaN,while those of N-GaN remained unchanged.P-GaN was found to be more sensitive to irradiation than N-GaN thin film.The effectiveness of x-ray irradiation in enhancing the electrical properties of P-GaN thin films was demonstrated in this study.
文摘This paper describes a method to decompose multi-scale information from different source medical image using wavelet transformation. The data fusion between CT image and MRI image is implemented based on the coefficients fusion rule which included choice of regional variance and weighted average wavelet information. The result indicates that this method is better than WMF, LEF and RVF on fusion results, details and target distortion.
文摘Economic development and social progress, China’s openness to the outside world is getting higher and higher, and the development of comprehensive Russian curriculum is particularly important. Among them, for the situational teaching method, it is one of the most important teaching methods. Through the application of the situational teaching method, a vivid and vivid learning atmosphere can be created, and the intuitiveness and image of the language scene can be fully reflected, which provides a strong guarantee for the development of Russian curriculum teaching. This paper mainly uses the application of situational teaching method in the comprehensive Russian curriculum, aiming to provide feasible guidance for relevant researchers.
基金supported by the National Natural Science Foundation of China (Grant No.62301247)the Fundamental Research Funds for the Central Universities (Grant No.2024300427)+4 种基金the Natural Science Foundation of Jiangsu Province (Grant No.BK20230778)the Key Research and Development Program of Jiangsu Province (Grant No.BK20232009)the Innovation Leading Talent Foundation of Suzhou (Grant No.ZXL2023164)Guangdong Major Project of Basic Research (Grant No.2021B0301030003)Jihua Laboratory (Project No.X210141TL210).
文摘Owing to the unique characteristics of ultra-thin body and nanoscale sensitivity volume,MoS_(2)-based field-effect tran-sistors(FETs)are regarded as optimal components for radiation-hardened integrated circuits(ICs),which is exponentially grow-ing demanded especially in the fields of space exploration and the nuclear industry.Many researches on MoS_(2)-based radiation tolerance electronics focused on the total ionizing dose(TID)effect,while few works concerned the displacement damage(DD)effects,which is more challenging to measure and more crucial for practical applications.We first conducted measurements to assess the DD effects of MoS_(2) FETs,and then presented the stopping and ranges of ions in matter(SRIM)simulation to analysis the DD degradation mechanism in MoS_(2) electronics.The monolayer MoS_(2)-based FETs exhibit DD radiation tolerance up to 1.56×1013 MeV/g,which is at least two order of magnitude than that in conventional radiation hardened ICs.The exceptional DD radiation tolerance will significantly enhance the deployment of MoS_(2) integrated circuits in environments characterized by high-energy solar and cosmic radiation exposure.